
U.S. Government Protection Profile
for Separation Kernels

in Environments Requiring
High Robustness

VERSION 0.621

Information Assurance Directorate

National Security Agency
9800 Savage Road

Fort George G. Meade, MD 20755-6000

1 July 2004

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

This page intentionally left blank.

 1

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Foreword

1 This publication, “U.S. Government Protection Profile for Separation Kernels in Environments
Requiring High Robustness”, is issued by the Information Assurance Directorate as part of its
program to promulgate security standards for information systems. This protection profile is
based on the “Common Criteria for Information Technology Security Evaluations, Version 2.1.”
[1]

2 Comments on this document should be directed to: ppcomments@iatf.net. The comments should
include the title of the document, the page, the section number, and paragraph number, detailed
comment and recommendations.

 2

mailto:ppcomments@iatf.net

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Table of Contents

1. Introduction.. 10

1.1 Identification .. 10

1.2 Overview... 10
1.2.1 TOE Environment Defining Factors ..11
1.2.2 Selection of Appropriate Robustness Levels ...12

1.3 Mutual Recognition of Common Criteria Certificates... 16

1.4 Conventions.. 16

1.5 Glossary of Terms.. 20

1.6 Document Organization .. 23

2. Target of Evaluation (TOE) Description .. 25

2.1 Product Type.. 25

2.2 Separation Kernel Concepts ... 25

2.3 Trusted Delivery .. 30

2.4 Trusted Recovery... 31

2.5 Evaluation Considerations.. 33

2.6 General TOE Functionality .. 34

2.7 Cryptographic Requirements ... 35

2.8 TOE Operational Environment ... 35

3. TOE Security Environment ... 37

3.1 Use of High Robustness... 37

3.2 Threat Agent Characterization .. 37

3.3 Threats.. 39

3.4 Security Policy ... 40

3.5 Security Usage Assumptions... 41

4. Security Objectives ... 42

 3

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

4.1 TOE Security Objectives... 42

4.2 Environment Security Objectives .. 44

5. TOE Security Functional Requirement .. 46

5.1 Security Audit (FAU) .. 46
5.1.1 Security Audit Automatic Response (FAU_ARP)...46
5.1.2 Security Audit Data Generation (FAU_GEN) ...47
5.1.3 Security Audit Event Selection (FAU_SEL) ...49

5.2 Cryptographic Support (FCS).. 50
5.2.1 Explicit: Baseline Cryptographic Module (FCS_BCM_EXP)...50

5.3 User Data Protection (FDP).. 51
5.3.1 Information Flow Control Policy (FDP_IFC)..51
5.3.2 Information Flow Control Functions (FDP_IFF)...52
5.3.3 Residual Information Protection (FDP_RIP)...53

5.4 Identification and Authentication (FIA).. 53
5.4.2 Subject and Resource Attribute Binding (FIA_USB)..53

5.5 Security Management (FMT) ... 54
5.5.1 Management of Security Attributes (FMT_MSA)...54
5.5.2 Management of TSF Data (FMT_MTD) ...54

5.6 Protection of the TSF (FPT) ... 55
5.6.1 Underlying Abstract Machine Test (FPT_AMT)...55
5.6.2 Explicit: Establishment of Secure State (FPT_ESS)...55
Application Note: The phrase “upon activation of any partition or information flow policy” means that the

TSF has been initialized (i.e., the non-TSF trusted initialization functions have successfully completed), the

TSF has completed the subject-attribute to subject binding and resource-attribute to resource binding, and the

TSF is now ready to sustain secure runtime operations...55
5.6.3 Fail Secure (FPT_FLS)..55
5.6.4 Integrity of Exported TSF Data (FPT_ITI)..56
5.6.5 Trusted Recovery (FPT_RCV) ..56
5.6.6 Reference Mediation (FPT_RVM) ..57
5.6.7 Domain Separation (FPT_SEP) ...57
5.6.8 Time Stamps (FPT_STM) ...58
5.6.9 TSF Self Test (FPT_TST)..58

 4

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

5.7 Resource Utilization (FRU)... 58
5.7.1 Resource Allocation (FRU_RSA)..58

End Notes .. 59

6. TOE Security Assurance Requirements.. 61

6.1 Configuration Management (ACM) .. 63
6.1.1 CM Automation (ACM_AUT) ..63
6.1.2 CM Capabilities (ACM_CAP)...64
6.1.3 CM Scope (ACM_SCP)...66

6.2 Delivery and Operation (ADO) .. 66
6.2.1 Delivery (ADO_DEL) ...66
6.2.2 Installation, Generation and Start-Up (ADO_IGS)..68

6.3 Development (ADV) .. 69
6.3.1 Architectural Design (ADV_ARC)..69
6.3.2 Composition Information (ADV_CMP) ..69
6.3.3 Functional Specification (ADV_FSP) ...70
6.3.4 Development Requirements for Hardware ..71
6.3.5 High-Level Design (ADV_HLD) ..71
6.3.6 Information Availability (ADV_IFA)..71
6.3.7 Implementation Representation (ADV_IMP)..72
6.3.8 Trusted Initialization (ADV_INI) ..73
6.3.9 TSF Internals (ADV_INT)...75
6.3.10 Low-level Design (ADV_LLD)..77
6.3.11 Representation Correspondence (ADV_RCR)..78
6.3.12 Security Policy Modeling (ADV_SPM) ...79

6.4 Guidance Documents (AGD) .. 79
6.4.1 Administrator Guidance (AGD_ADM) ...79
6.4.2 User Guidance (AGD_USR)..81

6.5 Life Cycle Support (ALC)... 82
6.5.1 Development Security (ALC_DVS) ..82
6.5.2 Flaw Remediation (ALC_FLR) ...82
6.5.3 Life Cycle Definition (ALC_LCD) ...83
6.5.4 Tools and Techniques (ALC_TAT)...84

 5

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.6 Ratings Maintenance (AMA).. 85
6.6.1 Assurance Maintenance Plan (AMA_AMP)..85

6.7 Testing (ATE)... 86
6.7.1 Coverage (ATE_COV) ..86
6.7.2 Depth (ATE_DPT)...86
6.7.3 Functional Tests (ATE_FUN)..86
6.7.4 Independent Testing (ATE_IND) ..87

6.8 Vulnerability Assessment (AVA) ... 87
6.8.1 Covert Channel Analysis (AVA_CCA)...87
6.8.2 Misuse (AVA_MSU)...88
6.8.3 Strength of TOE Security Functions (AVA_SOF) ..89
6.8.4 Vulnerability Analysis (AVA_VLA)...90

End Notes .. 91

7. Rationale... 92

7.1 Security Objectives derived from Threats .. 92

7.2 Objectives derived from Security Policies ... 97

7.3 Objectives derived from Assumptions ... 100

7.4 Requirements Rationale.. 101

7.5 IT Environment Requirements Rationale ... 113

7.6 Explicit Requirements Rationale ... 114
7.6.1 Explicit TOE Functional Requirements...114
7.6.2 Explicit TOE Assurance Requirements ...115

7.7 Rationale for Strength of Function .. 116

7.8 Rationale for Assurance Rating ... 116

8. References .. 117

Appendix A - Acronyms ... 118

Appendix B - Cryptographic Standards, Policies, and Other Publications 119

Appendix C – Rationale for IFC/IFF Requirements ... 120

Appendix D – TSF Data Description .. 122

 6

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix E – Explanatory Material for Explicit Class ADV Requirements........................... 123

E.1 Rationale for Class ADV: Development .. 123

E.2 Rationale for ADV_ARC_EXP .. 129

E.3 Rationale for ADV_CMP_EXP.. 132

E.4 Rationale for ADV_FSP_EXP.. 134

E.5 Rationale for ADV_HLD_EXP .. 143

E.6 Rationale for ADV_IFA_EXP .. 146

E.7 Rationale for ADV_IMP_EXP ... 148

E.8 Rationale for ADV_INT_EXP.. 151

E.9 Rationale for ADV_LLD_EXP... 157

E.10 Rationale for ADV_RCR_EXP... 161

E.10 Rationale for ADV_SPM_EXP... 162

Appendix F – Example TOE Scenario.. 166

 7

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

List of Figures

Figure 1-1 Universe of Environments... 14
Figure 1-2 Likelihood of Attempted Compromise... 15
Figure 2-1. SKPP Resource Abstraction ... 26
Figure 2-2 Allocation of Separation Kernel Components .. 27
Figure 2-3 Example SKPP Configuration Data .. 29
Figure 2-4 Minimal Configuration of Resources... 29
Figure 2-5 Trusted Delivery Scenario ... 31
Figure 2-6 TOE Recovery State Diagram.. 32
Figure E-1 Development Class Decomposition.. 124
Figure E-2 Relationships between TOE Representations and Requirements ... 125
Figure E-3 Interfaces in a DBMS System .. 136
Figure F-1 Example TOE Scenario .. 167

 8

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

List of Tables

Table 5.1 - Explicit Functional Requirements ___ 46
Table 5.2 Auditable Events ___ 48
Table 6.1 - Explicit Assurance Requirements __ 61
Table 6.2 - Summary of Assurance Components by Evaluation Assurance Level __________________ 63
Table 7.1 – Mapping of Security Objectives to Threats ______________________________________ 92
Table 7.2 – Mapping of Security Objectives to Security Policies _______________________________ 97
Table 7.3 – Mapping of Security Objectives to Assumptions _________________________________ 100
Table 7.4 – Mapping of Security Requirements to Objectives ________________________________ 101
Table 7.5 – Mapping of Security Requirements for IT Environment to Objectives ________________ 113
Table 7.6 – Rationale for Explicit TOE Functional Requirements_____________________________ 114
Table 7.7 – Rationale for Explicit TOE Assurance Requirements _____________________________ 115

 9

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

1. Introduction
3 This section contains overview information necessary to allow a Protection Profile (PP) to be

registered through a Protection Profile Registry. The PP identification provides the labeling and
descriptive information necessary to identify, catalogue, register, and cross-reference a PP. The
PP overview summarizes the profile in narrative form and provides sufficient information for a
potential user to determine whether the PP is of interest. The overview can also be used as a
stand-alone abstract for PP catalogues and registers. The “Conventions” section provides the
notation, formatting, and conventions used in this protection profile. The “Glossary of Terms”
section gives a basic definition of terms, which are specific to this PP. The “Document
Organization” section briefly explains how this document is organized.

1.1 Identification
4 Title: U.S. Government Protection Profile for Separation Kernels in Environments Requiring

High Robustness

5 Registration: Information Assurance Directorate

6 Keywords: separation kernel, COTS, high robustness, data isolation, information flow control,
partition, cryptography

1.2 Overview
7 This “U.S. Government Protection Profile for Separation Kernels in Environment Requiring

High Robustness” (SK PP) specifies the security functional and assurance requirements for a
class of Separation Kernels. Unlike the traditional Security Kernel that performs all trusted
functions for a secure operating system, a Separation Kernel’s primary security function is to
partition (viz. separate) the subjects and resources of a system into policy-based equivalence
classes, and to control information flows between partitions. The partitions and information flow
policies are defined by the Separation Kernel’s configuration data. A Separation Kernel
evaluated against this PP provides the trusted foundation for use in security critical and complex
applications whose security requirements are not addressed by this PP.

8 This SK PP uses Department of Defense (DoD) and National Information Assurance (IA)
guidance and policies as a basis to establish the requirements for National Security Systems1.
Products meeting this protection profile become candidates for use in National Security Systems.
However, compliance to this protection profile is not, by itself, sufficient.

9 Conformant products support information flow control, secure initialization, trusted delivery,

1 National Security Systems are systems that contain classified information or involves intelligence activities,
involves cryptologic activities related to national security, involves command and control of military forces,
involves equipment that is an integral part of a weapon or weapon system, or involves equipment that is critical to
the direct fulfillment of military or intelligence missions.

 10

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

trusted recovery and audit capabilities. Compliance alone does not offer sufficient confidence
that national security information is appropriately protected in the context of a larger system in
which the TOE is integrated. Designers of such systems must apply appropriate systems security
engineering principles and techniques to afford acceptable protection for national security
information. In particular, it is the responsibility of the larger system’s designers to articulate
support for a coherent application-level security policy in the Separation Kernel’s configuration
data, as well as to ensure that the configuration data itself is coherent and self-consistent. It is
only with well-formed configuration data that the Separation Kernel can be expected to enforce
mission critical policies. Such policies may include those that are associated with the
management of information classified at different sensitivity levels based on its degree of
confidentiality or integrity.

10 Conformant products may also be suitable for commercial mission-critical applications, given
similarly well-formed configuration data. The judgement as to whether a given instantiation of
configuration data is coherent, as well as being well formed with respect to some application-
level security policy are beyond the scope of this protection profile. It is noted that this
protection profile applies specific environmental assurance requirements on certain external
programs (e.g., applications, libraries or middleware) in systems where the configuration data set
defines partitions that are not partially ordered with respect to information flow control.

11 This protection profile also levies assurance requirements to the support tools and procedures
that are critical to developing and operating the Separation Kernel but which are not considered
as part of the trusted security functions of the Separation Kernel.

1.2.1 TOE Environment Defining Factors
12 The environment for a TOE can be characterized by the authorization (or lack of authorization)

of the least trustworthy entity compared to the highest value of TOE resources (i.e. the TOE
itself and all of the data processed by the TOE).

13 In trying to specify the environments in which TOEs with various levels of robustness are
appropriate, it is useful to first discuss the two defining factors that characterize the environment:
value of the resources and authorization of the entities to those resources.

14 Note that there are an infinite number of combinations of entity authorization and value of
resources; this conceptually “makes sense” because there are an infinite number of potential
environments, depending on how the resources are valued by the organization, and the variety of
authorizations the organization defines for the associated entities. In the next section 1.2.2, these
two environmental factors will be related to the robustness required for selection of an
appropriate TOE.

1.2.1.1 Value of Resources
15 Value of the resources associated with the TOE includes the data being processed or used by the

TOE, as well as the TOE itself (for example, a real-time control processor). “Value” is assigned
by the organization that owns the resources. For example, in the DoD low-value data might be

 11

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

equivalent to data marked “FOUO”, while high-value data may be those classified Top Secret.
In a commercial enterprise, low-value data might be the internal organizational structure as
captured in the corporate on-line phone book, while high-value data might be corporate research
results for the next generation product.

16 Note that when considering the value of the data one must also consider the value of data or
resources that are accessible through exploitation of the TOE. For example, a firewall may have
“low value” data itself, but it might protect an enclave with high value data. If the firewall was
being depended upon to protect the high value data, then it must be treated as a high-value-data
TOE.

1.2.1.2 Authorization of Entities
17 Authorization that entities (users, administrators, other IT systems) have with respect to the TOE

(and thus the resources of that TOE, including the TOE itself) is an abstract concept reflecting a
combination of the trustworthiness of an entity and the access and privileges granted to that
entity with respect to the resources of the TOE. For instance, entities that have total
authorization to all data on the TOE are at one end of this spectrum; these entities may have
privileges that allow them to read, write, and modify anything on the TOE, including all TSF
data. Entities at the other end of the spectrum are those that are authorized to few or no TOE
resources. For example, in the case of an operating system, an entity may not be allowed to log
on to the TOE at all (that is, they are not valid users listed in the operating system’s user
database).

18 It is important to note that authorization does not refer to the access that the entities actually
have to the TOE or its data. For example, suppose the owner of the system determines that no
one other than employees is authorized to certain data on a TOE, yet they connect the TOE to the
Internet. There are millions of entities that are not authorized to the data (because they are not
employees), but they actually have connectivity to the TOE through the Internet and thus can
attempt to access the TOE and its associated resources.

19 Entities are characterized according to the value of resources to which they are authorized; the
extent of their authorization is implicitly a measure of how trustworthy the entity is with respect
to any of the applicable security policies.

1.2.2 Selection of Appropriate Robustness Levels
20 Robustness is a characteristic of a TOE defining how well it can protect itself and its resources; a

more robust TOE is better able to protect itself. This section relates the defining factors of IT
environments, authorization, and value of resources to the selection of appropriate robustness
levels.

21 When assessing any environment with respect to Information Assurance, the critical point to
consider is the likelihood of an attempted security policy compromise, which was characterized
in the previous section in terms of entity authorization and resource value. As previously
mentioned, robustness is a characteristic of a TOE that reflects the extent to which a TOE can

 12

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

protect itself and its resources. It follows that as the likelihood of an attempted resource
compromise increases, the robustness of an appropriate TOE should also increase.

22 It is critical to note that several combinations of the environmental factors will result in
environments in which the likelihood of an attempted security policy compromise is similar.
Consider the following two cases:

23 The first case is a TOE that processes only low-value data. Although the organization has stated
that only its employees are authorized to log on to the system and access the data, the system is
connected to the Internet to allow authorized employees to access the system from home. In this
case, the least trusted entities would be unauthorized entities (e.g. non-employees) exposed to the
TOE because of the Internet connectivity. However, since only low-value data are being
processed, the likelihood that unauthorized entities would find it worth their while to attempt to
compromise the data on the system is low and selection of a basic robustness TOE would be
appropriate.

24 The second case is a TOE that processes high-value (e.g., classified) information. The
organization requires that the TOE be in a closed environment, and that every user with physical
and logical access to the TOE undergo an investigation so that they are authorized to the highest
value data on the TOE. Because of the extensive checks done during this investigation, the
organization is assured that only highly trusted users are authorized to use the TOE. In this case,
even though high value information is being processed, it is unlikely that a compromise of that
data will be attempted because of the authorization and trustworthiness of the users; therefore,
selection of a basic robustness TOE would be appropriate.

 13

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Highest Value of Resources
Associated with the TOE

Low
Value

High
Value

Not
Authorized

Partially
Authorized

Fully
Authorized

A
ut

ho
riz

at
io

n
D

ef
in

ed
 fo

r
Le

as
t T

ru
st

w
or

th
y

En
tit

y

Increasing Robustness Requirements

Figure 1-1 Universe of Environments

25 The preceding examples demonstrated that it is possible for radically different combinations of
entity authorization and resource values to result in a similar likelihood of an attempted
compromise. As mentioned earlier, the robustness of a system is an indication of the protection
being provided to counter compromise attempts. Therefore, a basic robustness system should be
sufficient to counter compromise attempts where the likelihood of an attempted compromise is
low. Figure 1-1 depicts the “universe” of environments characterized by the two factors
discussed in the previous section: on one axis is the authorization defined for the least
trustworthy entity, and on the other axis is the highest value of resources associated with the
TOE.

26 As depicted in Figure 1-1, the robustness of the TOEs required in each environment steadily
increases as one goes from the upper left of the chart to the lower right; this corresponds to the
need to counter increasingly likely attack attempts by the least trustworthy entities in the
environment. Note that the shading of the chart is intended to reflects the notion that different
environments engender similar levels of “likelihood of attempted compromise”, signified by a
similar color. Further, the delineations between such environments are not stark, but rather are
finely grained and gradual.

27 While it would be possible to create many different “levels of robustness” at small intervals
along the “Increasing Robustness Requirements” line to counter the increasing likelihood of

 14

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

attempted compromise due to those attacks, it would not be practical nor particularly useful.
Instead, in order to implement the robustness strategy where there are only three robustness
levels: Basic, Medium, and High, the graph is divided into three sections, with each section
corresponding to a set of environments where the likelihood of attempted compromise is roughly
similar. This is graphically depicted in the Figure 1-1.

28 A second representation of environments is shown in Figure 1-2, the “dots” represent given
instantiations of environments; like-colored dots define environments with a similar likelihood of
attempted compromise. Correspondingly, a TOE with a given robustness should provide
sufficient protection for environments characterized by like-colored dots. In choosing the
appropriateness of a given robustness level TOE PP for an environment, then, the user must first
consider the lowest authorization for an entity as well as the highest value of the resources in that
environment. This should result in a “point” in the chart above, corresponding to the likelihood
that that entity will attempt to compromise the most valuable resource in the environment. The
appropriate robustness level for the specified TOE to counter this likelihood can then be chosen.

29

Highest Value of Resources
Associated with the TOE

Low
Value

High
Value

Not
Authorized

Partially
Authorized

Fully
Authorized

A
ut

ho
riz

at
io

n
D

ef
in

ed
 fo

r
Le

as
t T

ru
st

w
or

th
y

En
tit

y Low Likelihood
Basic Robustness

Medium Likelihood
Medium Robustness

High Likelihood
High Robustness

Figure 1-2 Likelihood of Attempted Compromise

30 The difficult part of this activity is differentiating the authorization of various entities, as well as
determining the relative values of resources; (e.g., what constitutes “low value” data vs. “high
value” data). Because every organization will be different, a rigorous definition is not possible.
In section 3 of this PP, the targeted threat level for a high robustness TOE is characterized. This

 15

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

information is provided to help organizations using this PP ensure that the functional
requirements specified by this high robustness PP are appropriate for their intended application
of a compliant TOE.

1.3 Mutual Recognition of Common Criteria
Certificates

31 The assurance requirements contained in this PP are equivalent to the Evaluated Assurance Level
6 (EAL 6) as defined in the Common Criteria (CC) [3] with augmentation. The augmented
assurances are in the areas of development, independent testing, systematic flaw remediation,
and maintenance of assurance. COTS Separation Kernels meeting the requirements of this
profile provide a high level of robustness. Under the “Arrangement on the Mutual Recognition
of Common Criteria Certificates in the field of Information Technology Security” document,
only CC requirements at or below EAL 4 are mutually recognized. Because this profile exceeds
the limits imposed by the “Arrangement on the Mutual Recognition of Common Criteria
Certificates in the field of Information Technology Security” document, the US will recognize
only certificates issued by the US evaluation scheme to meet this profile. Other national
schemes are likewise under no obligation to recognize US certificates with assurance
components exceeding EAL4.

1.4 Conventions
32 The notation, formatting, and conventions used in this protection profile (PP) are consistent with

version 2.1 of the Common Criteria for Information Technology Security Evaluation. Font style
and clarifying information conventions were developed to aid the reader.

33 The CC permits four functional component operations: assignment, iteration, refinement, and
selection to be performed on functional requirements. These operations are defined in Common
Criteria, Part 2, paragraph 2.1.4 as:
− assignment: allows the specification of an identified parameter;

− refinement: allows the addition of details or the narrowing of requirements;

− selection: allows the specification of one or more elements from a list; and

− iteration: allows a component to be used more than once with varying operations.

34 Assignments or selections left to be specified by the developer in subsequent security target
documentation are italicized and identified between brackets (“[]”). In addition, when an
assignment or selection has been left to the discretion of the developer, the text “assignment:” or
“selection:” is indicated within the brackets. Assignments or selection created by the PP author
(for the developer to complete) are bold, italicized, and between brackets (“[]”). CC selections
completed by the PP author are underlined and CC assignments completed by the PP author are
bold.

35 Refinements are identified with “Refinement:” right after the short name. They permit the
addition of extra detail when the component is used. The underlying notion of a refinement is

 16

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

that of narrowing. There are two types of narrowing possible: narrowing of implementation and
narrowing of scope2. Additions to the CC text are specified in bold. Deletions of the CC text are
identified in the “End Notes” with a bold number after the element (“8”).

36 Iterations are identified with a number inside parentheses (“(#)”). These follow the short family
name and allow components to be used more than once with varying operations.

37 Explicit Requirements are allowed to create requirements should the Common Criteria not offer
suitable requirements to meet the PP needs. The naming convention for explicit requirements is
the same as that used in the CC. To ensure these requirements are explicitly identified, the
ending “_EXP” is appended to the newly created short name. However, most of the explicit
requirements are based on existing CC requirements. To make it easier for the PP reader to view
any changes from existing CC elements, the added text is written in bold text.

38 Application Notes are used to provide the reader with additional requirement understanding or to
clarify the author’s intent. These are italicized and usually appear following the element needing
clarification.

39 Table 1.1 provides examples of the conventions (explained in the above paragraphs) for the
permitted operations.

Table 1.1 – Functional Requirements Operation Conventions

Convention Purpose Operation

Bold The purpose of bolded text is used to alert the reader that
additional text has been added to the CC. This could be an
assignment that was completed by the PP author or a refinement
to the CC statement.

Examples:

FDP_IFC.2.1 The TSF shall enforce Information
Flow Control policy on subjects and all
resources and on all operations that cause
information to flow to and from subjects
covered by the SFP.

FAU_GEN.1.1 Refinement: The TSF shall be able to
generate audit data for the following auditable
events:

(Completed)
Assignment

or

Refinement

2 US interpretation #0362: Scope of Permitted Refinements

 17

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Convention Purpose Operation

Italics The purpose of italicized text is to inform the reader of an
assignment or selection operation to be completed by the
developer or ST author. It has been left as it appears in the CC
requirement statement.

Examples:

FAU_ARP.1.1 The TSF shall take [assignment: list
of least disruptive actions] upon detection of a
potential security violation.

FDP_RIP.2.1 The TSF shall ensure that any previous
information content of a resource is made
unavailable upon the [selection: allocation of the
resource to, deallocation of the resource from]
all exported resources.

Assignment

(to be completed
by developer or

ST author)

or

Selection
(to be completed
by developer or

ST author)

Underline The purpose of underlined text is to inform the reader that a
choice was made from a list provided by the CC selection
operation statement.

Example:

FAU_SEL.1.1 The TSF shall be able to include or
exclude auditable events from the set of audited
events based on the following attributes:

a) subject identity,

b) event type,

c) success of auditable security events, and

d) failure of auditable security events.

Selection
(completed by

PP author)

 18

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Convention Purpose Operation

Parentheses

(Iteration #)

The purpose of using parentheses and an iteration number is to
inform the reader that the author has selected a new field of
assignments or selections with the same requirement and that the
requirement will be used multiple times. Iterations are
performed at the component level. The component behavior
name includes information specific to the iteration between
parentheses.

Example:

5.4.1.1 Explicit: Management of TSF Data (for
Configuration Data) (FMT_MTD_EXP.1)

FMT_MTD_EXP.1.1(1) The TSF shall restrict the
ability to select and activate the TSF policy
configuration data to authorized subjects.

5.4.1.1 Explicit: Management of TSF Data (for General
TSF Data) (FMT_MTD_EXP.1(2))

FMT_MTD_EXP.1.1(2) The TSF shall prevent
modification of TSF policy configuration data.

Iteration 1
(of component)

Iteration 2

(of component)

Explicit: (_EXP) The purpose of using Explicit: before the family or component
behavior name is to alert the reader and to explicitly identify a
newly created component. To ensure these requirements are
explicitly identified, the “_EXP” is appended to the newly
created short name and the component and element names are
bolded.

Example:

5.4.1.1 Explicit: Management of Security Functions
Behavior (FMT_MOF_EXP.1)

FMT_MOF_EXP.1.1 The TSF shall restrict the ability
to enable and disable audit generation to the
configuration data.

Explicit
Requirement

 19

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Convention Purpose Operation

Endnotes The purpose of endnotes is to alert the reader that the author has
deleted Common Criteria text. An endnote number is inserted at
the end of the requirement, and the endnote is recorded on the
last page of the section. The endnote statement first states that a
deletion was performed and then provides the rationale.
Following is the family behavior or requirement in its original
and modified form. A strikethrough is used to identify deleted
text and bold for added text. A text deletion rationale is
provided. Examples:

Text as shown:

FAU_SAA.1.2 Refinement: The TSF shall monitor
the accumulation or combination of the
following events known to indicate a potential
security violation: [assignment: subset of
defined auditable events].1

Endnote statement:

1 A deletion of CC text was performed in FAU_SAA.1.2. Rationale:
The words “enforce the following rules for monitoring audited
events: a)” were deleted for clarity and flow of the requirement.
Additionally the assignment was moved from the middle of the
requirement to the end for clarity and flow of the requirement.
FAU_SAA.1.2 Refinement: The TSF shall enforce the following

rules for monitoring audited events: a) monitor the
accumulation or combination of [assignment: subset of
defined auditable events] the following events known to
indicate a potential security violation: [assignment: subset of
defined auditable events].

Refinement

1.5 Glossary of Terms
40 This profile includes terms from the Common Criteria [1] by reference. Other terms are

described in this section to aid in the understanding and application of the requirements.

Administrator Any personnel responsible for the configuration, installation,
maintenance, or integration of the TOE or its data.

Configuration Function The procedures and automated mechanisms employed to
generate the TSF configuration data and corresponding integrity
seals.

 20

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Configuration data

Configuration data,

 flow policy

Configuration data,

 non-flow policy

TSF data that provides various control information to the TSF
that is used by the TSF during initialization to define the secure
initial state and its behavior during runtime. Configuration data
consists of flow policy configuration data and supporting policy
configuration data. See Appendix D.

TSF flow policy configuration data assigns (binds) subjects and
exported resources to partitions, thereby defining TSF partitions,
and also defines the information flow control and partition flow
control policies for determining communication between and
within those partitions.

TSF non-flow policy configuration data defines all other
configurable TSF critical data, such as audit configuration
parameters, cryptographic configuration parameters, clock
settings and execution period for self-test.

Covert Channel An unintended and/or unauthorized communications path that
can be used to transfer information in a manner that violates a
security policy [6]. Covert channels allow transfer of
information through indirect access by subjects to internal
resources; whereas, a transfer of information in violation of the
security policy through exported resource(s) would be a TSF
flaw.

Delivery, Trusted Procedures and automated mechanisms employed to deliver a
copy of the TOE from the TOE developer to the customer, such
that the customer copy is assured to be the same as the
developer’s master copy.

Initialization Function The procedures and automated mechanisms that bring the TSF to
an initial secure state.

Initialization includes the boot function that brings the TSF
implementation (code) and TSF data (e.g., configuration data)
into its execution domain (e.g., read it from disk, from ROM, or
from flash memory into a memory space allocated for TSF
functions and data).

Load Function The procedures and automated mechanisms to convert the
software implementation and/or configuration data into a TSF-
useable form. The initial load function can take different forms,
including: placement of the implementation or configuration
information onto suitable media (e.g., CD, ROM or flash
memory); or compilation of configuration data as part of the
TSF implementation. The load function may also include the
insertion or installation of the media into the TOE hardware at
either the TOE developer or customer site.

 21

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Maintenance Mode A system mode initiated by the detection of a TSF failure or
imminent TSF failure in which some or all of the security
functions are non-operational, and either: 1) the TSF can recover
automatically; or 2) user intervention is required to recover.

Operational Mode A mode of operation where all of the TSF security functions are
available and all SFPs are enforced.

Partition A set of subjects and a set of exported resources that are within
the same policy-based equivalence class as defined by the
configuration data. For a given partition, either but not both sets
may be empty. Note that a partition is not an active entity: see
subject.

Resources that are by default accessible by all partitions are
virtualized and exported. The configuration data assigns (binds)
each exported resource to a single partition for the purposes of
defining such partitions.

Every subject is assigned (bound) to a single partition by the
configuration data for the purposes of defining partitions.

Principle of Least Privilege This principle requires that each subject and internal module in a
system be granted the most restrictive set of privileges (or lowest
clearance) needed for the performance of authorized tasks. The
application of this principle limits the damage that can result
from accident, error, or unauthorized use [5].

Residual Information
Protection (RIP)

Ensuring that deleted information is no longer accessible, and
that newly created exported resources do not contain information
that should not be accessible [2].

Resource

Resource, Exported

Resource, Internal

Resources are the totality of all hardware, firmware and software
and data that are executed, utilized, created, protected or
exported by the TSF (separation kernel).

Exported resources are those resources to which an explicit
reference is possible via a TSF interface (e.g., the programming
or configuration interface).

Internal resources are those resources that are not exported
resources.

Secure State

Secure State, Initial

A state defined in the TSP model in which the TOE has
consistent TSF data and the TSF can correctly enforce the
policy. [2, par. 1236]

The initial secure state is the secure state arrived at after a
successful initialization.

 22

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Separation Kernel Hardware and/or firmware and/or software mechanisms whose
primary function is to separate multiple partitions and control
information flow between and within the partitions.

Subject An active entity within the TSC that causes operations to be
performed. A subject is an abstraction created by the TSF and
exported at the TSFI.

TSF Data Data created by and for the TOE that might affect the operation
of the TOE. See Appendix D for more information.

Trusted Individual A person or persons who perform procedures upon which the
security of the TOE may depend. Requirements for
identification, authentication, and establishing the
trustworthiness of trusted individuals are allocated to the IT
environment. See OE.TRUSTED_INDIVIDUAL.

Note: The current document assumes that trusted individuals
interact with the TOE before runtime; considering the above
definition, is it reasonable to also allow this interaction during
runtime and/or maintenance mode?

1.6 Document Organization
41 Section 1 provides the introductory material for the protection profile.

42 Section 2 describes the Target of Evaluation in terms of its envisaged usage and connectivity.

43 Section 3 defines the expected TOE security environment in terms of the threats to its security,
the security assumptions made about its use, and the security policies that must be followed.

44 Section 4 identifies the security objectives derived from the threats and policies.

45 Section 5 identifies and defines the security functional requirements from the CC that must be
met by the TOE in order for the functionality-based objectives to be met.

46 Section 6 identifies the TOE security assurance requirements.

47 Section 7 provides a rationale to explicitly demonstrate that the information technology security
objectives satisfy the policies and threats. Arguments are provided for the coverage of each
policy and threat. The section then explains how the set of requirements are complete relative to
the objectives, and that each security objective is addressed by one or more component
requirements. Arguments are provided for the coverage of each objective.

48 Section 8 identifies background material used as reference to create this profile.

49 Appendix A defines frequently used acronyms.

50 Appendix B identifies cryptographic standards, policies and other publication referenced in this
PP.

 23

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

51 Appendix C provides a rationale for the IFC/IFF requirements.

52 Appendix D provides a description of the various types of TSF data.

53 Appendix E provides a rationale for changes to ADV requirements.

54 Appendix F provides an example scenario for TOE functions.

 24

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

2. Target of Evaluation (TOE)
Description

2.1 Product Type
55 This protection profile specifies requirements for a multi-partition separation kernel together

with a uni-processor hardware base for use as a component in National Security Systems and
other systems responsible for protecting highly sensitive information. The separation kernel
divides all resources under its control into partitions such that the actions of an active entity (i.e.,
a subject) in one partition are isolated from (viz., cannot be detected by or communicated to) an
active entity in another partition, unless an explicit means for that communication has been
established. To achieve high robustness and other rigorous verification objectives, the separation
kernel must be minimized with respect to functionality, architecture and design. This protection
profile focuses on core functional capabilities that include:

• Partitioning (separation and isolation) of all resources, including CPU, memory and
devices

• Controlled sharing of selected resources
• Audit services

56 The separation kernel provides to its hosted software programs high-assurance partitioning and
information flow control properties that are both tamperproof and non-bypassable. These
capabilities provide a trusted foundation upon which the enforcement of specific application-
level (vs. kernel-level) security policies can be achieved. Examples of these software programs
include multilevel secure reference monitors, guards, device drivers, file managers, and message-
passing services, as well as those for implementing operating system, middleware and virtual
machine monitor abstractions.

2.2 Separation Kernel Concepts
57 A separation kernel achieves isolation of subjects in different partitions by virtualization of

shared resources: each partition encompasses a resource set that appears to be entirely its own
(see Figure 2-1). To achieve this objective for resources that can only be accessed by one subject
at a time, such as the CPU, the ideal separation kernel must ensure that the temporal usage
patterns from different partitions are not apparent to each other. Other resources, such as
memory, may be accessed by different partitions simultaneously, while preserving idealized
isolation, if the separation kernel ensures, for example, that partitions are allocated different and
non-interacting portions of the resource. Furthermore, separation kernel utilization of its own
internal resources must also preserve the desired isolation
properties.

 25

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

TOE Security Functions

Subject 1

Resource
5

Resource 9

Resource 8
Resource 6Resource 4

Resource 7
Resource

10

Subject 3Subject 2

T
SF

 E
xp

o r
te

d
R

es
ou

rc
es

T

SF
 In

te
rn

al

R
es

ou
r c

es

Partition A Partition B Partition C

Figure 2-1. SKPP Resource Abstraction

58 A separation kernel meeting these properties will have configuration data that establishes the
static partition definitions and the static allocation of resources to partitions. The configuration
data is created using evaluated tools and procedures provided as part of the TOE. After it is
created, the configuration data may be loaded onto various media (e.g., PROM or CD) for later
initialization into the TSF, or it may be encoded directly into the TSF, e.g., as part of the
delivered software implementation or hardware.

59 Figure 2-2 describes the allocation of separation kernel components to the TSF and TOE. These
components are involved in several steps leading to an initial secure state, as follows (see also
example TOE scenario in Appendix F):

• Trusted Delivery. The TOE developer employs trusted mechanisms and procedures to
deliver the TOE, or implementation components of the TOE to the customer (e.g., system
integrator, application developer or end user). Trusted delivery is used for the initial
version as well as updates. See also Figure 2-5.

• Configuration. A trusted individual employs evaluated tools and procedures to
generate the machine-readable configuration data and a corresponding integrity seal. At a
minimum, the configuration tool must translate human-readable (e.g., ASCII) characters
into machine-readable (e.g., binary) format. A trusted individual verifies the accuracy of
the generated configuration data either through manual inspection or with the support of
trusted automated tools.

 26

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

• Load. A trusted individual employs evaluated tools and procedures to transfer the
software implementation and configuration data, either together or separately, into a form
that is accessible by TOE. Loading of configuration data may occur in the customer IT
environment and/or in the TOE developer IT environment. A developer “load” step (if
any) occurs before trusted delivery. The load function may also be included as part of
offline Trusted Recovery (see “halted” state in Figure 2-6) in the event that the
configuration data needs to be recovered.

• Initialization. A trusted individual or IT mechanism initiates the functions for starting
the TSF, e.g. via a power-on switch or other mechanism accessible to the IT environment.
Then, a trusted individual may need to employ further evaluated procedures (e.g., in a
non-embedded environment), after or during which the initialization functions complete
the transformation of the TSF into a secure initial state. The initialization functions
include verification of the integrity of the TSF code and configuration data, as well as the
transfer of that code and data into the TSF execution domain.

Target of Evaluation

Trusted Delivery
Seal Generation

Trusted Delivery
Seal Verification

Configuration
Tool

Boot Function

Load Function

TSF

Runtime
Software

Components

Configuration
Data

Hardware

TSF-
initialization
Components

Figure 2-2 Allocation of Separation Kernel Components

60 A partition is an abstraction implemented by the TSF from resources under its control. The
configuration data will include the assignment of active subject entities (e.g., programs, tasks,
processes, threads) and externally available resources to partitions, as well as information as to
how (e.g., in which mode) partitions and/or resources may be accessed by subjects and/or other

 27

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

partitions. A given partition may have zero, one or more subjects, as well as zero or more
resources assigned to it.

61 The content and format of the configuration data may take different forms, depending on the
scope and granularity of the information flow control and partition flow control policies to be
enforced, as well as on other factors of system design. Figure 2-3 shows example configuration
data structures required to represent the partitions and flows illustrated in Figure 2-1.3 A given
system may be designed to enforce the information flow policy at the granularity of the partition
(see “Partition-to-Partition Flow Matrix,” in Figure 2-3), and/or at the granularity of subjects and
resources within partitions (see “Subject-to-Resource Flow Matrix,” in Figure 2-3), and/or some
combination of these (see “Subject-to-Partition Flow Matrix,” in Figure 2-3).

62 The Subject-to-Resource flow matrix of Figure 2-3 represents an application of the principle of
least privilege with respect to the partitions and flows shown in Figure 2-1: no subject is given
more authorization than the minimal required to invoke operations to achieve the required flows.
An alternate approach to achieving the principle of least privilege for a system that enforces only
a Partition-to-Partition policy is through the use of a minimal configuration. A minimal
configuration of a system is where, for all pairs of partitions, X and Y, all of the subjects of
partition X require for their functionality, and are given, the same authorization to invoke
operations on all of the resources of partition Y. Note that X and Y may be the same or different
partitions, and the access given may be empty for a given pair of partitions. A minimal
configuration is required for this alternate approach because the Partition-to-Partition matrix may
otherwise provide more authorization than what is required. Figure 2-4 shows a system (e.g., for
transaction processing) with a minimal configuration.

3 Notice that all intra-partition flows are also explicitly allowed in the two “partition” flow matrices to reflect an
intra-partition free-flow policy, but such “self” flows may also be inhibited, or expressed implicitly, e.g., by
convention.

 28

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

B3

A2

C1 0

C9

B8

B7

B6

A5

A4

A1

P a rtitio nR eso urce ID

R W X--P artition C

XR W X-P a rtitio n B

-WR W XP artition A

P a rtition CP a rtitio n BP artition A

R eso urce ID

-X--R W-----3

----WR--R W2

------R W-R W-1

10987654321S ub jects

P artition A ssignm ents P artition -to -P artition F low M atr ix

S u b ject-to -R esou rce F low M atrix

XR W X-3

-WR W X2

--R W X1

P a rtitio n CP ar tition BP a rtitio n AS ub jec ts

S u b ject-to -P artition F low M atr ix

Figure 2-3 Example SKPP Configuration Data

Resource 5
Resource 4

Subject 2Subject 1

Partition A Partition B Partition C

Resource 3

Partition-to-Partition Flow Matrix

---Partition C

RW-Partition B

-RRWPartition A

Partition CPartition BPartition A

Figure 2-4 Minimal Configuration of Resources

63 While the information flow control and partition flow control policies, and resource allocations

 29

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

are largely fixed during runtime, the protection profile allows a separation kernel to have a
flexible mechanism for emergency modification of policy and resource allocation. This
mechanism allows several complete sets of policy configuration data to be initialized into the
separation kernel, one of which will define the current policy. Authorized subjects may have the
ability to select and activate a different current policy during runtime.

2.3 Trusted Delivery
64 The TOE and components of the TOE may be distributed in various ways, both for the initial

delivery and for subsequent updates. This protection profile requires that the TOE include
procedures and/or tools to verify that the on-site version of the TOE matches the master version
(see “Trusted Delivery” in Figure 2-5). Such a verification tool may be configured to execute on
the TOE (but not as part of the TSF) or on other hardware, but in either case the tool and the
hardware that it runs on are evaluated as part of the TOE. Verification of the TOE and
configuration data occur again as part of initialization. Figure 2-5 shows how applications and
TOE configuration data may be installed by the TOE developer and/or by various entities within
the customer environment. However, the TOE as well as any separately delivered TOE
components must be delivered to the customer environment by means of trusted delivery. The
end result is that the “user” will have a complete and verified TOE, with verified configuration
data and installed applications. If TOE components were modified after trusted delivery, then
the TOE would not be in an evaluated configuration.

 30

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

SKPP Trusted Delivery Scenario

TOE
Component(s)

TOE
Component(s) TOE

TOE Developer Integrator Maintenance End User

Application ApplicationApplication

Config data Config data

Trusted Delivery

Config dataConfig data

Optional
Installation

Customer Environment

Verified by
Trusted Delivery

Verified by
TSF Initialization

(Optional) (Optional)

Legend:

Application

TOE
Component(s)

Figure 2-5 Trusted Delivery Scenario

2.4 Trusted Recovery
65 At a given time, the separation kernel will be in one of three modes of operation: Halted,

Operational or Maintenance. Similarly, the separation kernel could be in either a secure state or
an insecure state. Table 2-1 summarizes the possible mode/state combinations:

 Secure Insecure

Operational √ √

Maintenance √ n/a

Halted √ n/a

Table 2-1. Possible mode/state combinations

66 Figure 2-6 illustrates a generic recovery scenario involving these modes and states. A successful

 31

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

initialization brings the kernel to an operational secure state. For failures that require
preservation of secure state, as specified by FPT_FLS.1, the kernel must remain in the
operational secure state while handling the failures. Recovery may occur directly within the
operational secure state, or indirectly via the (secure) maintenance mode. The implementation of
the fail-secure mechanism is ST-specific.

67 For failures that do not require preservation of secure state under FPT_FLS.1, the separation
kernel may temporarily enter an operational insecure state. That is, between the time that a
security failure first occurs and the time that the TSF can detect it and respond, the conservative
assumption is that the failure introduces insecurity. This insecure state is ephemeral because the
separation kernel will return to the operational secure state if the failure is either directly
recoverable, or indirectly recoverable via the (secure) maintenance mode.

68 In maintenance mode, some or all of the TSF interface functions (TSFIs) are unavailable. This
restriction to a degraded or a completely non-operational, runtime functionality may enable the
TSF to establish and maintain a secure state during the remaining recovery sequence. This
protection profile does not require interaction with a trusted individual to return from
maintenance mode to secure operational mode, as some other protection profiles might (e.g., see
[2] Volume 2, paragraph 1234). The implementation of maintenance mode is ST-specific.

Operational
Secure State

Halted

Shutdown

Fail

Initialize

Fail Secure
(FPT_FLS)

Maintenance
Secure State

Recover

Shutdown

Auto Recover
(FPT_RCV)

Operational
Insecure StateShutdown

Fail Secure
(FPT_FLS)

Figure 2-6 TOE Recovery State Diagram

 32

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

2.5 Evaluation Considerations
69 A separation kernel may be structured or configured to function within a larger system as an

embedded or a non-embedded component. From an evaluation standpoint, the critical difference
between embedded and non-embedded functionality is the degree to which trust is distributed
between authorized individuals and the component during runtime. In the non-embedded
separation kernel, the security provided during runtime may depend on the procedural actions of
authorized individuals to monitor, maintain, or otherwise manage the separation kernel; in the
embedded case, there can be no distribution of trust to authorized individuals during runtime, so
these security functions are performed solely by the separation kernel. Thus, this protection
profile may include certain runtime requirements that may be satisfied by either automated
security functions or manual procedures.

70 Additionally, a separation kernel, like many systems under Common Criteria evaluation, may
include hardware or software components that have been created by different developers. While
this heterogeneous diversity is not a conceptual problem for evaluation, it may present
constraints on the execution of the evaluation process, such as the order of the evaluation of
components. Even if diverse TOE developers create the various components for a given
separation kernel, each TOE component must be evaluated to the requirements of this protection
profile as part of that TOE.

71 Similarly, the modular and component structure of separation kernels may differ. The TOE (i.e.,
separation kernel) may consist of separate initialization and runtime components; separate
hardware independent and hardware dependent components4; as well as the cross product of
these two dichotomies (see Table 2-2). This structure will be a critical factor in the separation
kernel evaluation, especially with regard to whether a module or component is determined to be
in the TSF, the TOE, or in the IT environment. Initialization components are not part of the TSF
and are evaluated under separate criteria (see ADV_INI), whereas all runtime components are
part of the TSF. The evaluation requirements for the TSF, TOE and IT environment are
separately stated elsewhere in this document.

 Hardware

Dependent

Hardware

Independent

Initialization √ √

Runtime √ √

Table 2-2: Types of Components in a Separation Kernel

4 Examples of hardware dependent components are an “architecture support package” for
interaction with a specific processor and a “board support package” (BSP) for interaction with a
specific processor environment (devices, buses, I/O, etc.).

 33

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

72 This protection profile applies to both embedded and non-embedded separation kernels, as well
as homogeneously- and heterogeneously-developed separation kernels. However, it is outside of
the scope of this protection profile to address how the evaluation process or methodology is
affected by these differences. This protection profile takes a standard approach to address
different or unique requirements for different separation kernel configurations, as follows:

• When possible, differences in the criteria are first addressed through use of the CC-defined
operations of assignment, selection, iteration and refinement;

• In the cases where the CC-defined operations do not suffice, the CC-defined explicitly stated
requirements model is used;

• Where there are differences in the implications of the criteria, those differences are addressed
by the Application Notes that follow the criteria.

73 When this TOE is used in composition with other components or products to make up a larger
system environment, it is the responsibility of the larger system’s designers to articulate support
for a coherent application-level security policy in the separation kernel’s configuration data, as
well as to ensure that the configuration data itself is coherent and self-consistent. It is only with
well-formed configuration data that the separation kernel can be expected to enforce mission
critical policies. The judgment as to whether a given instantiation of configuration data is self-
consistent, or well-formed with respect to the intended application-level security policy, is
beyond the scope of this protection profile and beyond the scope of the evaluation of the
separation kernel.

74 Encryption functions utilized for the security and integrity of this TOE and the information it
protects must be implemented with appropriate cryptographic strengths and assurances as
approved by NSA to ensure adequate protection.

2.6 General TOE Functionality
75 Conformant separation kernels must include the following security features:

− Information flow control to enforce strict partition isolation with the exception of explicit
interactions allowed via TSF (configuration) data

− Cryptographic services which provide mechanisms to protect the integrity of TSF code and
data as it resides within the TOE and when it is transmitted to other trusted external
components; and

− Initialization into a secure state and trusted recovery from a failure to a secure state

− Failure detection and response; and

− Generation of audit data in support of middleware and application level audit services.

76 Among the requirements not levied in this PP are:

 34

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

− User interfaces for operational mode, maintenance mode or initialization;

− Identification and Authentication which mandates authorized users to be uniquely identified
and authenticated by the TSF;

− Discretionary Access Control (DAC) which restricts access to objects based on the identity
of subjects and/or groups to which they belong, and allows authorized users to specify
protection for objects that they control;

− Cryptographic services for applications to encrypt, decrypt, hash, and digitally sign data as it
resides within the system and as it is transmitted to other systems;

− Complete physical protection mechanisms, which must be provided by the environment.

2.7 Cryptographic Requirements
77 The TOE cryptographic services must provide both a level of functionality and assurance

regardless of its implementation (software, hardware, or any combination thereof). This is
achieved by meeting both the NIST FIPS PUB 140-2 standard and all additional requirements as
stated in this PP (refer to Appendix B for relevant cryptographic standards, policies, and other
publications).

78 For cryptographic services fully implemented in hardware, all FIPS PUB 140-2 Level 3
requirements excluding Roles, Services and Authentication, as well as all additional
requirements identified in this PP, must be met. For all other implementations (i.e., software, or
a combination of software and hardware), all the requirements identified in FIPS PUB 140-2
Security Level 1 excluding Roles, Services and Authentication, plus some of the requirements
for FIPS PUB 140-2 Security Level 3 (namely, those in the areas of: Cryptographic Module
Ports and Interfaces; Cryptographic Key Management; and Design Assurance); and all additional
requirements identified in this PP must be met. These two implementations, with the exception
of the Electromagnetic Interference/Electromagnetic Compatibility requirements, are equivalent
in intent and counter the identified threats in this protection profile.

79 For convenience, Section 5.2 of this PP identifies where a NIST certification is required and
against what standard. To meet this PP, the developer must have a NIST certification and
receive NSA approval for compliance to Section 5.2 and all other crypto-related requirements in
this PP.

2.8 TOE Operational Environment
80 It is assumed that the TOE environment is under the control of a single administrative authority

and has a homogeneous system security policy, including personnel and physical security. This
environment can be specific to an organization or a mission and may also contain multiple
networks or enclaves. Enclaves may be logical or be based on physical location and proximity.

81 The TOE may be accessible by external IT systems that are beyond the environment’s security
policies. The users of these external IT systems are similarly beyond the control of the separation
kernel’s policies. Although the users of these external systems are authorized in their

 35

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

environments, they are outside the scope of control of this particular environment so nothing can
be presumed about their intent. They must be viewed as potentially hostile.

 36

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

3. TOE Security Environment
82 This section defines the expected TOE security environment in terms of the threats, security

assumptions, and the security policies that must be followed for the high robustness TOE.

3.1 Use of High Robustness
83 A high robustness TOE is considered necessary protection for environments where the likelihood

of an attempted compromise is high, and the value of the protected resources is high. This
implies that the motivation of the threat agents will be high. Note that this also implies that the
resources and expertise of the threat agents may be high, because highly sophisticated threat
agents may be motivated to use great expertise and extensive resources in an environment where
high robustness is suitable.

84 An alternative perspective to thinking of the robustness level in terms of “likelihood of attempted
compromise” is to consider the damage to the organization that would result if a TOE
compromise were to occur. These two notions (likelihood of compromise and damage resulting
from compromise) are parallel notions. They both are intrinsically linked to the value of the data
being processed. The more valuable/sensitive the data, the greater the likelihood that an
adversary will attempt to compromise the TOE, similarly the greater the damage to the
organization that would result from such compromise.

3.2 Threat Agent Characterization
85 In addition to helping define the robustness appropriate for a given environment, the threat agent

is a key component of the formal threat statements in the PP. Threat agents are typically
characterized by a number of factors such as expertise, available resources, and motivation.
Because each robustness level is associated with a variety of environments, there are
corresponding varieties of specific threat agents (that is, the threat agents will have different
combinations of motivation, expertise, and available resources) that are valid for a given level of
robustness. The following discussion explores the impact of each of the threat agent factors on
the ability of the TOE to protect itself (that is, the robustness required of the TOE).

86 The motivation of the threat agent seems to be the primary factor of the three characteristics of
threat agents outlined above. Given the same expertise and set of resources, an attacker with low
motivation may not be as likely to attempt to compromise the TOE. For example, an entity with
no authorization to low value data nonetheless has low motivation to compromise the data
because of its low value; thus a basic robustness TOE should offer sufficient protection.
Likewise, fully authorized users with access to highly valued data similarly have low motivation
to attempt to compromise the data because of their authorization, thus again a basic robustness
TOE should be sufficient.

87 Unlike the motivation factor, however, the same can't be said for expertise. A threat agent with
low motivation and low expertise is just as unlikely to attempt to compromise a TOE as an
attacker with low motivation and high expertise; this is because the attacker with high expertise
does not have the motivation to compromise the TOE even though they may have the expertise

 37

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

to do so. The same argument can be made for resources as well.

88 Therefore, when assessing the robustness needed for a TOE, the motivation of threat agents
should be considered a “high water mark”. That is, the robustness of the TOE should increase as
the motivation of the threat agents increases.

89 Having said that, the relationship between expertise and resources is somewhat more
complicated. In general, if resources include factors other than just raw processing power
(money, for example), then expertise should be considered to be at the same “level” (low,
medium, high, for example) as the resources because money can be used to purchase expertise.
Expertise in some ways is different, because expertise in and of itself does not automatically
procure resources. However, it may be plausible that someone with high expertise can procure
the requisite amount of resources by virtue of that expertise.

90 It may not make sense to distinguish between these two factors; in general, it appears that the
only effect these may have is to lower the robustness requirements. For instance, suppose an
organization determines that, because of the value of the resources processed by the TOE and the
trustworthiness of the entities that can access the TOE, the motivation of those entities would be
“medium”. This normally indicates that a medium robustness TOE would be required because
the likelihood that those entities would attempt to compromise the TOE to get at those resources
is in the “medium” range. However, now suppose the organization determines that the entities
(threat agents) that are the least trustworthy have no resources and are unsophisticated. In this
case, even though those threat agents have medium motivation, the likelihood that they would be
able to mount a successful attack on the TOE would be low, and so a basic robustness TOE may
be sufficient to counter that threat.

91 It should be clear from this discussion that there is no “cookbook” or mathematical answer to the
question of how to specify exactly the level of motivation, the amount of resources, and the
degree of expertise for a threat agent so that the robustness level of TOEs facing those threat
agents can be rigorously determined. However, an organization can look at combinations of
these factors and obtain a good understanding of the likelihood of a successful attack being
attempted against the TOE. Each organization wishing to procure a TOE must look at the threat
factors applicable to their environment; discuss the issues raised in the previous paragraph;
consult with appropriate accreditation authorities for input; and document their decision
regarding likely threat agents in their environment.

92 The important general points to make are:
• The motivation for the threat agent defines the upper bound with respect to the level of

robustness required for the TOE

• A threat agent’s expertise and/or resources that is “lower” than the threat agent’s
motivation (e.g., a threat agent with high motivation but little expertise and few
resources) may lessen the robustness requirements for the TOE (see next point, however).

93 The availability of attacks associated with high expertise and/or high availability of resources
(for example, via the Internet or “hacker chat rooms”) introduces a problem when trying to
define the expertise of, or resources available to, a threat agent.

 38

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

3.3 Threats
94 The following threats are addressed by PP compliant TOEs:

T.ADMIN_ERROR An administrator may incorrectly install or configure the
TOE (including the misapplication of the principle of
least privilege to limit the damage that can result from
accident, error, or unauthorized use), or install a
corrupted TOE resulting in ineffective security
mechanisms.

T.ALTERED_DELIVERY The TOE may be corrupted or otherwise modified
during delivery such that the on-site version does not
match the master distribution version.

T.BAD_RECOVERY The TOE may be placed in an insecure state as a result
of unsuccessful recovery from a system failure or
discontinuity.

T.COVERT_CHANNEL_EXPLOIT An unauthorized information flow may occur between
partitions as a result of covert channel exploitation.

T.CRYPTO_COMPROMISE A malicious subject may cause key, data or executable
code associated with the cryptographic functionality to
be inappropriately accessed (viewed, modified, or
deleted), thus compromising the cryptographic
mechanisms and the data protected by those
mechanisms.

T.INCORRECT_BOOT

The TSF implementation and TSF data are not correctly
transferred into the TSF’s execution domain.

T.INCORRECT_CONFIG

The TSF configuration data does not accurately reflect
the user’s intentions regarding partitioning and
information flow.

T.INCORRECT_LOAD

The TSF code and/or configuration data are not
correctly converted into a TSF-useable form.

T.INSECURE_STATE When the TOE is initially started or restarted after a
failure, the security state of the TOE may be in an
insecure state.

T.POOR_DESIGN Unintentional or intentional errors in requirements
specification or design of the TOE may occur, leading to
flaws that may be exploited by a malicious subject.

 39

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

T.POOR_IMPLEMENTATION Unintentional or intentional errors in implementation of
the TOE design may occur, leading to flaws that may be
exploited by a malicious subject.

T.POOR_TEST Lack of or insufficient tests to demonstrate that all TOE
security functions operate correctly (including in a
fielded TOE) may result in incorrect TOE behavior
being undiscovered.

T.RESIDUAL_DATA A subject may gain unauthorized access to data through
reallocation of TOE resources from one subject to
another.

T.RESOURCE_EXHAUSTION A malicious subject may block others from system
resources (e.g., system memory, persistent storage, and
processing time) via a resource exhaustion attack.

T.TSF_COMPROMISE A malicious subject may cause TSF data or executable
code to be inappropriately accessed (viewed, modified
or deleted).

T.UNAUTHORIZED_ACCESS A subject may gain access to resources or services for
which it is not authorized according to the TOE security
policy.

3.4 Security Policy
95 The following organizational security policies are addressed by PP compliant TOEs:

P.ACCOUNTABILITY The TOE shall provide the capability to make available
information regarding the occurrence of security relevant
events.

P.CRYPTOGRAPHY The TOE shall use NIST FIPS validated cryptography as a
baseline with additional NSA-approved methods for key
management (i.e., generation, access, distribution,
destruction, handling, and storage of keys) and for
cryptographic operations (i.e., encryption, decryption,
signature, hashing, key exchange, and random number
generation services).

P.INDEPENDENT_TESTING The TOE must undergo independent testing.

P.LEAST_PRIVILEGE The TOE shall be designed such that the principle of least
privilege is applied to limit the damage that can result from
accident, error or unauthorized use.

 40

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

P.RATINGS_MAINTENANCE A plan for procedures and processes to maintain the TOE’s
rating must be in place to maintain the TOE’s rating once it
is evaluated.

P.SELECT_POLICY The TOE shall provide the capability to select and activate a
complete set of new policy configuration data. The TOE
shall ensure that the policy enforced upon the activation of
the new configuration data is consistent with the new
configuration data

P.SYSTEM_INTEGRITY The TOE shall provide the ability to periodically validate its
correct operation and, with the help of administrators if
necessary, it must be able to recover from any errors that are
detected.

P.USER_GUIDANCE The TOE shall provide documentation regarding the correct
use of the TOE security features.

P.VULNERABILITY_ANALYSIS
_AND_TEST

The TOE must undergo independent vulnerability analysis
and penetration testing by NSA to demonstrate that the TOE
is resistant to an attacker possessing a high attack potential.

3.5 Security Usage Assumptions
96 The specific conditions below are assumed to exist in a PP-compliant TOE environment:

A.CHANNELS If the residual risk from covert channels is a concern, it is
assumed that the applications executing on the TOE are trusted
with assurance commensurate with the value of the IT assets
protected by the TOE.

A.PHYSICAL It is assumed that the IT environment provides the TOE with
appropriate physical security commensurate with the value of
the IT assets protected by the TOE.

A.TRUSTED_FLOWS

If a subject is allowed by the configuration data to cause
information flow in violation of the partial ordering of
information flows between partitions, it is assumed that the
subject is trusted with assurance commensurate with the value
of the IT assets in all partitions to which it has access.

A.TRUSTED_INDIVIDUAL If an individual is allowed to perform procedures upon which
the security of the TOE may depend, it is assumed that the
individual is trusted with assurance commensurate with the
value of the IT assets.

 41

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

4. Security Objectives
97 This section defines the security objectives for the TOE and its environment. These objectives

are suitable to counter all identified threats and cover all identified organizational security
policies and assumptions. The TOE security objectives are identified with “O.” appended to the
beginning of the name and the environment objectives are identified with “OE.” Appended to the
beginning of the name.

4.1 TOE Security Objectives

O.ACCESS The TOE will ensure that subjects gain only
authorized access to resources that it controls.

O.ADMIN_GUIDANCE The TOE will provide administrators with the
necessary information for secure management of the
TOE.

O.AUDIT_GENERATION The TOE will provide the capability to detect and
generate audit records for security relevant auditable
events.

O.CHANGE_MANAGEMENT The configuration of, and all changes to, the TOE and
its development evidence will be analyzed, tracked,
and controlled throughout the TOE’s development.

O.CORRECT_BOOT The TOE will provide mechanisms to correctly
transfer the TSF implementation and TSF data into the
TSF’s execution domain.

O.CORRECT_CONFIG The TOE will provide procedures and mechanisms to
generate the TSF configuration data such that the TSF
configuration data accurately reflects the user’s
intentions regarding partitioning and information flow.

O.CORRECT_LOAD The TOE will provide procedures and mechanisms to
correctly convert the TSF code and/or configuration
data into a TSF-useable form.

O.CORRECT_TSF_OPERATION The TOE will provide a capability to test the TSF to
ensure the correct operation of the TSF during normal
operation.

O.COVERT_CHANNEL_ANALYSIS The TOE will undergo appropriate covert channel
analysis by NSA to demonstrate that the TOE meets
its functional requirement.

O.CRYPTOGRAPHIC_PROTECTION The TOE will support separation of the cryptography
from the rest of the TSF.

 42

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

O.CRYPTOGRAPHIC_SERVICES The TOE will use cryptographic mechanisms to
protect the integrity of TOE code and data as it resides
within the system and when it is transmitted to other
systems. The TOE will also use cryptographic
mechanisms to verify the integrity of the TSF code
and configuration data during initialization. The
cryptographic mechanism will use NIST FIPS
validated cryptography as a baseline with additional
NSA-approved methods.

O.FUNCTIONAL_TESTING The TOE will undergo independent security functional
testing that demonstrates the TSF satisfies the security
functional requirements.

O.INSTALL_GUIDANCE The TOE will be delivered with the appropriate
installation guidance to establish and maintain TOE
security.

O.INTERNAL_LEAST_PRIVILEGE The entire TSF will be structured to achieve the
principle of least privilege among TSF modules.

O.MANAGE The TOE will provide all the functions necessary to
support the administrative users and authorized
subjects in their management of the configuration data,
and restrict these functions from use by unauthorized
subjects.

O.PROTECT The TOE will provide mechanisms to protect services
and exported resources.

O.RATINGS_MAINTENANCE Procedures and processes to maintain the TOE’s rating
will be documented.

O.RECOVERY Procedures and/or mechanisms will be provided to
assure that recovery, such as from system failure or
discontinuity, is obtained without a protection
compromise.

O.REFERENCE_MONITOR The TOE will maintain a domain for its own execution
that protects itself and its resources from external
interference, tampering, or unauthorized disclosure.

O.RESIDUAL_INFORMATION The TOE will ensure that any information contained in
a protected resource is not released when the resource
is reallocated.

O.RESOURCE_SHARING The TOE will provide mechanisms that mitigate
attempts to exhaust TOE resources (e.g., system
memory, persistent storage, and processing time).

 43

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

O.SECURE_STATE The TOE will provide mechanisms to transition the
TSF to a secure state during start-up, re-activation of
the current flow policy configuration data and
activation of a new flow policy configuration data.

O.SOUND_DESIGN The TOE will be designed using sound design
principles and techniques. The TOE design, design
principles and design techniques will be adequately
and accurately documented.

O.SOUND_IMPLEMENTATION The implementation of the TOE will be an accurate
instantiation of its design.

O.TRUSTED_DELIVERY The integrity of the TOE must be protected during the
initial delivery and subsequent updates, and verified to
ensure that the on-site version matches the master
distribution version.

O.TSF_INTEGRITY The TOE will be able to verify the integrity of the TSF
code and data.

O.USER_GUIDANCE The TOE will provide users with the necessary
information for secure use of the TOE.

O.VULNERABILITY_ANALYSIS_T
EST

The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of the
TOE does not allow attackers with high attack
potential to violate the TOE’s security policies.

4.2 Environment Security Objectives

OE.CHANNELS If the residual risk from covert channels is a concern,
the applications executing on the TOE must be trusted
with assurance commensurate with the value of the IT
assets protected by the TOE.

OE.PHYSICAL Physical security will be provided for the TOE by the
IT environment commensurate with the value of the IT
assets protected by the TOE.

 44

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

OE.TRUSTED_FLOWS If a subject is allowed by the configuration data to
cause information flow in violation of the partial
ordering of information flows between partitions, that
subject must be trusted with assurance commensurate
with the value of the IT assets in all partitions to which
it has access.

OE.TRUSTED_INDIVIDUAL If an individual is allowed to perform procedures upon
which the security of the TOE may depend, that
individual is trusted with assurance commensurate
with the value of the IT assets.

 45

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

5. TOE Security Functional
Requirement

98 This section contains detailed security functional requirements for the Separation Kernels’
trusted security functions (TSF) supporting systems in high robustness environments. The
requirements are applied against the Separation Kernel in conjunction with the underlying
hardware that supports it. The requirements contained in this section are either selected from Part
2 of the CC or have been explicitly stated (with short names in bold and ending in “_EXP”).
Table 5.1 lists the explicit functional requirements in this section.

99 The cryptographic module plays an important role in the enforcement of the TOE security
policies. For this reason, the cryptographic related requirements contain more detail than other
requirements, in terms of refinements, iterations, and explicitly stated requirements. Refer to
section 1.4 to see the notation and formatting used in this profile.

Table 5.1 - Explicit Functional Requirements

Explicit Component Component Behavior Name

FCS_BCM_EXP.1 Baseline Cryptographic Module

FDP_RIP_EXP.2 Full Residual Information Protection

FMT_MSA_EXP.1 Management of Security Attributes

FMT_MTD_EXP.1 Management of TSF Data

FPT_ITI_EXP.1 Inter-TSF Detection of Modification

FPT_TST_EXP.1 TSF Testing

FRU_RSA_EXP.1 Maximum Quotas

5.1 Security Audit (FAU)
5.1.1 Security Audit Automatic Response (FAU_ARP)
5.1.1.1 Security Alarms (FAU_ARP.1)

FAU_ARP.1.1 Refinement: The TSF shall take [assignment: list of the actions to
take] upon detection of any failure of the TSF self-tests. 1

Application Note: The ST author is to fill in the open assignment with the list of actions that are
applicable for the TOE’s intended use, with particular attention to providing the ability for
the TOE to support system-level requirements for fault/failure detection and response..
Acceptable actions may include a visual or audible alarm, a signal/message to the IT
environment, or explicit action taken by the TSF (e.g., shutdown).

 46

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

5.1.2 Security Audit Data Generation (FAU_GEN)
5.1.2.1 Audit Data Generation (FAU_GEN.1)

FAU_GEN.1.1-NIAP-0410 The TSF shall be able to generate an audit record of the
following auditable events:

a) Start-up and shutdown of the audit functions;

b) Start-up and shutdown of the TOE;

c) All auditable events listed in Table 5.2;

d) [selection: [assignment: events at a basic level of audit introduced by the inclusion of
additional SFRs], [assignment: events commensurate with a basic level of audit
introduced by the inclusion of explicit requirements], no additional events].

Application Note: There is a broad range of possible auditable events in this category. For
example, the nature of these events for a deeply embedded real-time kernel is likely to be that
of fault, failure or other exception conditions.

For the first assignment in the selection, the ST author augments the table (or lists explicitly)
the audit events associated with the basic level of audit for any SFRs that the ST author
includes in the ST that are not included in this PP.

Likewise, for the second assignment the ST author includes audit events that may arise due to
the inclusion of any explicit requirements in the ST that are not already in the PP. Because
“basic” audit is not defined for such requirements, the ST author will need to determine a set
of events that are commensurate with the type of information that is captured at the basic
level for similar requirements.

It is acceptable for the ST author to choose "no additional events", if the ST author has not
included additional requirements, or has included additional requirements that do not have a
basic level (or commensurate level) of audit associated with them. In determining whether or
not added functionality should have auditable events, the ST author is to assess the added
functionality in terms of its conceptual relationship with the core functionality expressed in
this PP and their corresponding requirements for auditable events. As an example:
FAU_SEL.1 requires that the set of auditable events be statically determined prior to
execution of the TSF and that the set of auditable events are not modifiable during runtime.
Since there is no capability to modify the audit behavior at runtime, there is no requirement to
audit changes to the runtime behavior. However, should the ST author provide the capability
for authorized subjects to modify the behavior of the audit mechanism during runtime, then
any such runtime modification constitutes an auditable event.

Application Note: The TSF is not required to generate a structured audit “record” in any
specified format. The TSF is expected to capture data that identifies and characterizes the
event as defined in Table 5-2 Auditable Events, and provide a capability for the IT
environment to “pull” that information from the TSF. The TSF is not required to notify the IT
environment of the existence of the audit data and the TSF is not required to “push” the
information to the IT environment.

Application Note: It is common that for purposes of engineering analysis, real-time embedded
systems record operational data to support analysis and debugging. This data is referred to
as instrumentation. This data is not necessarily security relevant, that is, not associated with
enforcement of the security policy. The audit data generation requirements should not to be

 47

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

confused with instrumentation requirements levied by applications assuming the
instrumentation requirements do not violate the minimization requirements.

Table 5.2 Auditable Events

Requirement Audit events prompted by requirement

Security Alarms (FAU_ARP.1) • Actions taken due to failure of TSF self tests

Audit Data Generation
(FAU_GEN.1)

(None)

Selective Audit (FAU_SEL.1) (None)

Explicit: Baseline Cryptographic
Module (FCS_BCM_EXP.1)

(None)

Complete Information Flow
Control (for Information Flow
Control Policy) (FDP_IFC.2(1))

(None)

Complete Information Flow
Control (for Partition Flow
Control Policy) (FDP_IFC.2(2))

(None)

Simple Security Attributes
(FDP_IFF.1)

• Establishment of connections between partitions.
Application Note: The TSF is not required to audit each instance of an
information flow between partitions. The TSF is required to provide the
capability to audit the establishment of each connection between partitions.

Partial Elimination of Illicit
Information Flows (FDP_IFF.4)

• The use of identified illicit information flow channels.

Full Residual Information
Protection (FDP_RIP_EXP.2)

(None)

Explicit: Management of
Security Attributes
(FMT_MSA_EXP.1)

(None)

Explicit: Management of TSF
Data (for Modification of Flow
Policy Configuration Data)
(FMT_MTD_EXP.1)

• (None)

Secure TSF Data (FMT_MTD.3) • All rejected values of TSF data.

Underlying Abstract Machine
Test (FPT_AMT.1)

• Failures detected by tests of the underlying abstract machine and the
results of the tests

Fail Secure (FPT_FLS.1) • Failures detected by the FPT_AMT.1 and FMT_TST.1 tests.

Explicit: Inter-TSF Detection of
Modification (FPT_ITI_EXP.1)

• The detection of modification of transmitted TSF data.

• The action taken upon detection of modification of transmitted TSF
data.

 48

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Automated Recovery
(FPT_RCV.2)

• The fact that a failure or service discontinuity occurred.

• Resumption of the regular operation.

• Type of failure or service discontinuity.

Function Recovery
(FPT_RCV.4)

• If possible, the impossibility to return to a secure state after failure or
a security function.

• If possible, the detection of a failure of a security function.

Non-Bypassability of the TSF
(FPT_RVM.1)

(None)

Complete Reference Monitor
(FPT_SEP.3)

(None)

Reliable Time Stamp
(FPT_STM.1)

• (None)

Explicit: TSF Testing
(FPT_TST_EXP.1)

• Failures of TSF self tests and the results of the tests.

Explicit: Maximum Quotas (for
System Memory)
(FRU_RSA.1(1))

• Rejection of allocation operation due to system memory limits.

Explicit: Maximum Quotas (for
Processing Time)
(FRU_RSA.1(2))

• Rejection of allocation operation due to processing time limits.

FAU_GEN.1.2-NIAP-0410 The TSF shall record within each audit record at least the
following information:

a) Date and time of the event, type of event, subject identity, and the outcome (success or
failure) of the event; and

b) For each audit event type, based on the auditable event definitions of the functional
components included in the PP/ST,

• the identity of the resource;

Application Note: The TSF is not required to explicitly provide date and time of the event. It is
acceptable for the TSF to provide a timestamp that reflects relative time within the TSF so
long as the IT environment is able to correlate that timestamp to date and time and the IT
environment is able to establish event sequences based upon timestamp values.

Application Note: Other audit relevant information associated with security-relevant functions
that are included in the ST but that are not included in this PP should be included within the
audit record.

5.1.3 Security Audit Event Selection (FAU_SEL)
5.1.3.1 Selective Audit (FAU_SEL.1)

FAU_SEL.1.1 The TSF shall be able to include or exclude auditable events from the

 49

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

set of audited events based on the following attributes:

a) resource identity,

b) subject identity,

c) event type,

d) success of auditable security events,

e) failure of auditable security events,

f) [selection: [assignment: list of additional attributes specific to the audit
capabilities of the implementation], no additional attributes].

Application Note: The TSF is not expected to provide a run-time capability for management of the
audit function behavior. It is acceptable for the TSF to provide the means for the audit function
behavior to be specified by the configuration data, and for that behavior to be static and remain in
effect until such time that the TSF is initialized with a different set of audit configuration data.

5.2 Cryptographic Support (FCS)
5.2.1 Explicit: Baseline Cryptographic Module (FCS_BCM_EXP)

5.2.1.1 Explicit: Baseline Cryptographic Module (FCS_BCM_EXP.1)

FCS_BCM_EXP.1.1 All cryptographic modules shall comply with FIPS PUB 140-2
when performing FIPS-approved cryptographic functions in FIPS-
approved cryptographic modes of operation.

Application Note: This requirement is met by presenting a NIST FIPS PUB 140-2 certificate.

FCS_BCM_EXP.1.2 Cryptographic functions and cryptographic modes of operation
as identified in this PP shall be NSA-validated.

FCS_BCM_EXP.1.3 All cryptographic modules implemented in the TSF [selection:

(1) Entirely in hardware shall comply with, at a minimum, FIPS PUB
140-2, Level 3. For Cryptographic Key Management, only Key
Entry and Key Storage functions are required;

(2) Entirely in software shall comply with, at a minimum, FIPS PUB
140-2, Level 1 and also FIPS PUB 140-2, Level 3 for the following:
Cryptographic Module Ports and Interfaces; Cryptographic Key
Management; and Design Assurance. For Cryptographic Key
Management, only Key Entry and Key Storage functions are
required;

(3) As a combination of hardware and software shall comply with, at
a minimum, FIPS PUB 140-2, Level 1 excluding and also FIPS
PUB 140-2, Level 3 for the following: Cryptographic Module Ports
and Interfaces; Cryptographic Key Management; and Design
Assurance. For Cryptographic Key Management, only the Key

 50

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Entry and Key Storage functions are required.]

Application Note: “Roles, Services and Authentication” is excluded because there are no
Identification & Authentication requirements in this SKPP.

Application Note: “Combination of hardware and software” means that some part of the
cryptographic functionality will be implemented as a software component of the TSF. The
combination of a cryptographic hardware module and a software device driver whose sole
purpose is to communicate with the hardware module is considered a hardware module
rather than a “combination of hardware and software”.

5.3 User Data Protection (FDP)
5.3.1 Information Flow Control Policy (FDP_IFC)
5.3.1.1 Complete Information Flow Control (for Information Flow Control Policy)

(FDP_IFC.2(1))

FDP_IFC.2.1(1) Refinement: The TSF shall enforce the Information Flow Control
policy on all subjects, all exported resources and all operations that
cause information to flow to and from subjects.4

FDP_IFC.2.2(1) Refinement: The TSF shall ensure that all operations that cause
any information to flow to and from any subject are covered by the
Information Flow Control SFP.5

Application Note: This information control policy applies to all subjects. The subjects are defined
as an active entity from the perspective of the TSF. An acceptable implementation may
allocate, at most, only one subject per partition or could allocate multiple subjects per
partition. Note that the configuration data could specify a configuration where a partition
has no subject allocated to it.

As with subjects, this policy applies to *all* exported resources available at the TSFI. The
granularity of the policy enforcement should be at the granularity of the exported resources.
An acceptable implementation may provide very abstract representation of resources at the
TSFI, such as communication channels, stacks, and semaphores. Another acceptable
implementation may provide resources to the granularity of memory blocks, hardware
registers, hardware devices, etc. The TOE-specific policy needs to apply to all exported
resources.

5.3.1.2 Complete Information Flow Control (for Partition Flow Control Policy)
(FDP_IFC.2(2))

FDP_IFC.2.1(2) Refinement: The TSF shall enforce the Partition Flow Control
policy on all flows between partitions and all operations that cause
information to flow to and from partitions. 6

FDP_IFC.2.2(2) Refinement: The TSF shall ensure that all operations that cause
any information to flow to and from any partition are covered by the
Partition Flow Control SFP. 7

 51

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

5.3.2 Information Flow Control Functions (FDP_IFF)
5.3.2.1 Simple Security Attributes (FDP_IFF.1)

FDP_IFF.1.1-NIAP-0407 Refinement: The TSF shall enforce the Information Flow
Control policy and the Partition Flow Control policy based on the
following types of security attributes: 8

a) The identity of a subject;

b) The identity of a resource;

c) The mode of operation;

d) The identity of the single partition to which the subject is assigned;

e) The identity of the single partition to which the resource is assigned.

Application Note: It is acceptable for a subject ID or a resource ID to be the same as its partition
ID if the subject or resource is in a partition that includes no other subject or resource, thus
obviating the need to explicitly assign that subject or resource to a partition. Such a subject
or resource ID may be considered to be a partition ID for the purposes of enforcing
FDP_IFF.1.2.a.

FDP_IFF.1.2-NIAP-0407 Refinement: The TSF shall permit an information flow
between a subject and a resource via a controlled operation if the
following rules hold: 9

a) The mode of operation is allowed by the configuration data for the partition to
which the identified subject is assigned and the partition to which the identified
resource is assigned; and

b) The mode of operation is allowed by the configuration data for the identified
subject and the identified resource.

Application Note: For FDP_IFF.1.2, implicit forms of allowance, such as regular expressions or
defaults are acceptable implementations.

Application Note: For flows between subjects and resources that have IDs that are the same as
their respective partition IDs, the TSF need not maintain separate configuration information
regarding rules a and b.

FDP_IFF.1.3-NIAP-0407 Refinement: The TSF shall enforce the following
separation rule: If the mode of operation is not explicitly allowed,
per FDP_IFF.1.2, then deny the requested information flow. 10

FDP_IFF.1.4-NIAP-0407 The TSF shall provide no additional SFP capabilities.

FDP_IFF.1.5-NIAP-0407 The TSF shall explicitly authorize an information flow based
on the following rules: no explicit authorization rules.

FDP_IFF.1.6-NIAP-0407 The TSF shall explicitly deny an information flow based on
the following rules: no explicit denial rules.

 52

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

5.3.2.2 Partial Elimination of Illicit Information Flows (FDP_IFF.4)

FDP_IFF.4.1 The TSF shall enforce the Partition Flow Control policy to limit the
capacity of covert timing channels between partitions to a
[assignment: maximum capacity].

FDP_IFF.4.2 Refinement: The TSF shall enforce the Partition Flow Control
policy to prevent covert storage channels between partitions.11

5.3.3 Residual Information Protection (FDP_RIP)
5.3.3.1 Explicit: Full Residual Information Protection (FDP_RIP_EXP.2)

FDP_RIP_EXP.2.1 The TSF shall ensure that any previous information content is
made unavailable upon the [selection: allocation, deallocation] of all
exported resources.

5.4 Identification and Authentication (FIA)
100 5.4.1 Subject and Resource Attribute Definition (FIA_ATD)

5.4.1.1 Explicit: Subject and Resource Attribute Definition (FIA_ATD_EXP.1)

FIA_ATD_EXP.1.1 For each subject, the TSF configuration data shall include the
following list of security attributes: [assignment: list of subject security
attributes].

FIA_ATD_EXP.1.2 For each resource, the TSF configuration data shall include the
following list of security attributes: [assignment: list of resource security
attributes].

Application Note: The configuration data fulfills a function that is equivalent to what is traditionally

performed by an authorized individual with the responsibility for defining users and granting
authorization for users to interact with objects. For the separation kernel, that function is
expanded to include defining resource attributes as the configuration data must explicitly define all
resources.

5.4.2 Subject and Resource Attribute Binding (FIA_USB)

5.4.2.1 Explicit: Subject and Resource Attribute Binding (FIA_USB_EXP.1.1)

FIA_USB_EXP.1.1 Upon initialization of the TSF, the TSF shall associate the internal
representation of all security attributes defined for each subject with the
subject as specified in the configuration data.

FIA_USB_EXP.1.2 Upon initialization of the TSF, the TSF shall associate the internal
representation of all security attributes defined for each resource with the
resource as specified in the configuration data.

Application Note: The concept of user-subject binding applies to the separation kernel in the sense that

 53

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

the TSF is required to perform the binding of subject and resource attributes defined in the
configuration data to the internal representation of those attributes for each subject and resource
when it is created and assigned to a partition.

5.5 Security Management (FMT)

Application Note: The concept of security management for a separation kernel differs from that of general security

kernel since it is not anticipated that there will be direct interaction with the separation kernel by authorized
individuals such as system administrators. It is more likely that security management of the separation kernel
will be accomplished exclusively via the pre-runtime static definition of the separation kernel capabilities,
exclusively via the dynamic runtime management of the separation kernel capabilities by authorized application
processes (such as a system controller application), or via a combination of the two.
This protection profile has taken the former approach and assumes that the configuration data completely
defines the separation kernel runtime configuration, and that configuration remains static for the duration of
the execution of the separation kernel. As a result, there are no FMT requirements for authorized subjects to
interact with the TSF for the purpose of managing the TSF.

It is appropriate for the Security Target author to express security relevant management capabilities that are
specific to and consistent with the intended operational environment in which the separation kernel will be
placed and the needs of middleware and application level processes with responsibility to manage the
separation kernel.
Should this option be exercised, then the Security Target author should use this FMT section to state the
management requirements for granting authorization to subjects and determining what authorized subjects can
and can not do in regards to invoking TSF functions and accessing TSF data. Additionally, the ST author must
update the audit requirements in the FAU section to reflect the auditable events associated with providing
runtime management capabilities to some authorized subjects while restricting the use of those capabilities on
others.

5.5.1 Management of Security Attributes (FMT_MSA)
5.5.1.1 Explicit: Management of Security Attributes (FMT_MSA_EXP.1)

FMT_MSA_EXP.1.1 The TSF shall restrict the ability to assign authorized subjects
to the configuration data.

Application Note: This requires the configuration data to be the only means through which
subjects are designated as “authorized subjects”. During initialization, the TSF assigns
authorizations to subjects as specified by the configuration data.

5.5.2 Management of TSF Data (FMT_MTD)
5.5.2.1 Explicit: Management of TSF Data (for Modification of Flow Policy

Configuration Data) (FMT_MTD_EXP.1)

FMT_MTD_EXP.1.1 The TSF shall prevent modification of the flow policy
configuration data.

5.5.2.2 Secure TSF Data (FMT_MTD.3)

FMT_MTD.3.1 Refinement: The TSF shall ensure that only valid values are

 54

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

accepted for TSF data. 13

Application Note: Valid implies that the values fall within the defined range for the TSF data
(e.g., an audit enable/disable indicator must be within range of a Boolean type).

5.6 Protection of the TSF (FPT)
5.6.1 Underlying Abstract Machine Test (FPT_AMT)
5.6.1.1 Abstract Machine Testing (FPT_AMT.1)

FPT_AMT.1.1 Refinement: The TSF shall run a suite of tests during the initial start-
up, during automated recovery and periodically during normal operation
to demonstrate the correct operation of the security assumptions provided
by the abstract machine that underlies the software portions of the TSF.

Application Note: The test suite need only cover aspects of the underlying abstract machine on
which the TSF relies to implement required functions, including domain separation.

Application Note: The test suite for periodic testing may be a subset of the initial start-up test.
The period test suite should be a maximal set of tests that can be run without interfering with
the normal system operation. The period test suite may be further divided into different test
groups. Each test group may be scheduled to run at different time during run-time.

Application Note: Annex J of the CC, Part 2, explains that with respect to the FPT class, the TSF
consists of three parts: a) the TSF’s abstract machine, b) the TSF’s implementation, and c)
the TSF data. This component covers the testing of the TSF’s abstract machine which is
defined in Annex J as “the virtual or physical machine upon which the specific TSF
implementation under evaluation executes.”

5.6.2 Explicit: Establishment of Secure State (FPT_ESS)
5.6.2.1 Explicit: Establishment of Secure State (FPT_ESS_EXP.1)

FPT_ESS_EXP.1.1 The TSF shall ensure secure state upon activation of any
partition or information flow policy.

Application Note: The phrase “upon activation of any partition or information flow policy” means
that the TSF has been initialized (i.e., the non-TSF trusted initialization functions have
successfully completed), the TSF has completed the subject-attribute to subject binding and
resource-attribute to resource binding, and the TSF is now ready to sustain secure runtime
operations.

5.6.3 Fail Secure (FPT_FLS)
5.6.3.1 Failure with Preservation of Secure State (FPT_FLS.1)

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of
failures occur: [assignment: list of failures that are detected by tests
defined in FPT_AMT.1 and FPT_TST.1 and that require preservation of

 55

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

secure state].

Application Note: The ST author is to provide the list of post-initialization failures that can be
detected and for which the TSF can respond to and preserve a secure state.

Application Note: TSF failure modes vary and may include “hard” failures such as those
associated with hardware failure or unrecoverable software errors, and “soft” failures such
as intermittent hardware errors and recoverable software errors.

The TSF is not expected to protect itself against all types of hardware errors. For example, a
radiation induced change of a single bit in a memory access control register could result in
an incorrect (but valid) memory location being accessed. This would not be detected by the
hardware.

5.6.4 Integrity of Exported TSF Data (FPT_ITI)
5.6.4.1 Explicit: Inter-TSF Detection of Modification (FPT_ITI_EXP.1)

FPT_ITI_EXP.1.1 The TSF shall provide the capability to detect modification of all
TSF data whenever the TSF data is transmitted between the TSF and a
remote trusted IT product within the following metric: [assignment: a
defined modification metric].

FPT_ITI_EXP.1.2 The TSF shall provide the capability to verify the integrity of all
TSF data whenever the TSF data is transmitted between the TSF and a
remote trusted IT product and perform [assignment: action to be taken] if
modifications are detected.

Application Note: This requirement applies to TSF data such as the configuration data for those
cases where the TSF obtains the configuration data from a remote trusted product in the IT
environment. .

5.6.5 Trusted Recovery (FPT_RCV)
5.6.5.1 Automated Recovery (FPT_RCV.2)

FPT_RCV.2.1 Refinement: When automated recovery from a failure or service
discontinuity is not possible, the TSF shall enter a maintenance mode
where the ability to return the TOE to an operational secure state is
provided.

Application Note: The word “operational” has been inserted to make it clear that the desired
secure state is a secure state in operational mode as opposed to a secure state in maintenance
mode. See the Glossary of Terms section for the description of maintenance mode and
operational mode.

Application Note: There is no requirement that the TSF supports the recovery action to transition
from the maintenance mode to the operational mode. Entrance to maintenance mode can be
achieved by halting the system, and return to a secure state can be achieved by system start-
up.

 56

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

FPT_RCV.2.2 Refinement: The TSF shall ensure the return of the TOE to a
operational secure state using automated procedures for the following
failures/service discontinuities:

a) Power failures,

b) [selection: [assignment: list of additional failures/service discontinuities], no other
failures/service discontinuities].

Application Note: It is assumed that all systems can at least recover automatically from a power
failure.

5.6.5.2 Function Recovery (FPT_RCV.4)

FPT_RCV.4.1 The TSF shall ensure that all SFs that affect the secure state and
[assignment: list of failure scenarios] have the property that the SF either
completes successfully, or for the indicated failure scenarios, recovers to
a consistent and secure state.

5.6.6 Reference Mediation (FPT_RVM)
5.6.6.1 Non-Bypassability of the TSP (FPT_RVM.1)

FPT_RVM.1.1 The TSF shall ensure that TSP enforcement functions are invoked
and succeed before each function within the TSC is allowed to proceed.

5.6.7 Domain Separation (FPT_SEP)
5.6.7.1 Complete Reference Monitor (FPT_SEP.3)

FPT_SEP.3.1 The unisolated portion of the TSF shall maintain a security domain for
its own execution that protects it from interference and tampering by
untrusted subjects.

FPT_SEP.3.2 The TSF shall enforce separation between the security domains of
subjects in the TSC.

FPT_SEP.3.3 Refinement: The TSF shall maintain the part of the TSF that enforces
the information flow control, partition flow control and cryptography
SFPs in a security domain for its own execution that protects them from
interference and tampering by the remainder of the TSF and by subjects
untrusted with respect to the TSP. 14

Application Note: Ideally, use of off board hardware or a third processor hardware state is the
most preferred implementation supporting separation, because it would protect the part of the
TSF that enforces the cryptography from all other parts of the TSF. Migration to this most
preferred implementation is anticipated eventually.

Application Note: For separation kernels, it is not required to separate the unisolated portion of
the TSF from the part of the TSF that enforces the flow control and cryptography SFPs with
hardware mechanisms. Software layering is sufficient to meet this requirement.

 57

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

5.6.8 Time Stamps (FPT_STM)
5.6.8.1 Reliable Time Stamp (FPT_STM.1)

FPT_STM.1.1 The TSF shall be able to provide reliable time stamps for its own use.

Application Note: It is the responsibility of the ST developer to provide a definition and metric for
the term “reliable time stamp” and to provide evidence that the implementation meets the
defined definition and metric. The rational in the ST should be used to substantiate the
chosen definition and metric.

Application Note: Whatever native format the system keeps time in is acceptable. For example, a
monotonically increasing counter with a defined metric for each increment of the counter is
an acceptable implementation of this requirement.

5.6.9 TSF Self Test (FPT_TST)

5.6.9.1 Explicit: TSF Testing (FPT_TST_EXP.1)

FPT_TST_EXP.1.1 The TSF shall run a suite of self tests during the initial start-up,
during automated recovery and [assignment: conditions under which self
test should occur during normal operation] to demonstrate the correct
operation of the TSF’s implementation.

Application Note: See Annex J of the CC, Part 2, for an explanation of the notion of TSF’s
implementation.

FPT_TST_EXP.1.2 The TSF shall verify, or provide the capability for an authorized
subject to verify, the integrity of TSF configuration data and [assignment:
list of additional TSF data upon which the TSF depends to enforce its
security policies correctly].

FPT_TST_EXP.1.3 The TSF shall verify, or provide the capability for an authorized
subject to verify, the integrity of stored TSF executable code.

5.7 Resource Utilization (FRU)
5.7.1 Resource Allocation (FRU_RSA)

Application Note: If the total allocation exceeds the maximum limit of physical resources,
potential covert channels between partitions could be introduced.

5.7.1.1 Explicit: Maximum Quotas (for System Memory) (FRU_RSA_EXP.1(1))

FRU_RSA_EXP.1.1(1) The TSF shall enforce the allocation of system memory that
partitions can use simultaneously as defined by the configuration data.

5.7.1.2 Explicit: Maximum Quotas (for Processing Time) (FRU_RSA_EXP.1(2))

 FRU_RSA_EXP.1.1(2) The TSF shall enforce the allocation of processing time that

 58

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

partitions can use over a specified period of time as defined by the
configuration data.

Application Note: The algorithm to determine percentages of time can be based on many factors
(e.g., number of partitions, relative priority of partitions, availability of resources to
partitions).

End Notes

This section records the functional requirements where deletions of Common Criteria text were
performed.

1 A modification of CC text was performed in FAU_ARP.1.1. The words "least disruptive actions" were replaced

by the words “actions to take” and the words "a potential security violation" were replaced with “any failure of
the TSF self-tests”.

FAU_ARP.1.1 Refinement: The TSF shall take [assignment: list of the least disruptive actions to take] upon
detection of a potential security violation any failure of the TSF self-tests.

3 A deletion of CC text was performed in FCS_COP.1.1(2). Rationale: The words "a specified cryptographic" were
deleted for clarity and better flow of the requirement.

FCS_COP.1.1(2) - Refinement: The TSF shall perform cryptographic signature services in accordance with a
specified cryptographic the NIST-approved digital signature algorithm [selection:

4 A deletion of CC text was performed in FDP_IFC.2.1(1). Rationale: The words "covered by the SFP" were deleted
to remove the possible implication that there may be some subjects that are not covered by the Information
Flow Control SFP.

FDP_IFC.2.1(1) Refinement: The TSF shall enforce the Information Flow Control policy on all subjects, all
exported resources and all operations that cause information to flow to and from subjects covered by the
SFP.

5 A deletion of CC text was performed in FDP_IFC.2.2(1). Rationale: The words "in the TSC" were deleted to
remove the possible implication that there may be information or subjects outside the TSC. The words “an
information flow control” were changed to “the Information Flow Control” to clarify that this requirement
applies only to the Information Flow Control SFP.

FDP_IFC.2.2(1) Refinement: The TSF shall ensure that all operations that cause any information in the TSC to
flow to and from any subject in the TSC are covered by an information flow control the Information Flow
Control SFP.

6 A deletion of CC text was performed in FDP_IFC.2.1(2). Rationale: The open assignment variables “list of
subjects and information” were assigned to “all flows between partitions” and the word “subjects” was changed
to “partitions” to narrow this requirement to information flows between partitions. The words "covered by the
SFP" were deleted to remove the possible implication that there may be some partitions that are not covered by
the Partition Flow Control SFP.

FDP_IFC.2.1(2) Refinement: The TSF shall enforce the Partition Flow Control policy on [assignment: lists
of subjects and information] and all flows between partitions and all operations that cause information to
flow to and from subjects partitions covered by the SFP.

7 A deletion of CC text was performed in FDP_IFC.2.2(2). Rationale: The words "in the TSC" were deleted to
remove the possible implication that there may be information or partitions outside the TSC. The words
“subject” and “an information flow control” were changed to clarify that this requirement applies only to the
Partition Flow Control SFP.

 59

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

FDP_IFC.2.2(2) Refinement: The TSF shall ensure that all operations that cause any information in the TSC to
flow to and from any subject partition in the TSC are covered by the Partition Flow Control SFP.

8 A deletion of CC text was performed in FDP_IFF.1.1-NIAP-0407. Rationale: The words “subject and
information” were deleted to refine the scope of the security attributes.

FDP_IFF.1.1-NIAP-0407 Refinement: The TSF shall enforce the Information Flow Control policy and the
Partition Flow Control policy based on the following types of subject and information security attributes:

9 A deletion of CC text was performed in FDP_IFF.1.2-NIAP-0407. Rationale: The word “controlled” was deleted
as a modifier to “subject” since all subjects are controlled; there are no uncontrolled subjects. The word
“controlled” was deleted as a modifier to “resource,” since all resources are controlled; there are no
uncontrolled resources. “Information” was changed to “resource” to encompass both information and aspects
of the underlying hardware.

FDP_IFF.1.2-NIAP-0407 Refinement: The TSF shall permit an information flow between a controlled subject
and controlled information a resource via a controlled operation if the following rules hold:

10 A deletion of CC text was performed in FDP_IFF.1.3-NIAP-0407. Rationale: The words “information flow
control” were deleted to narrow the scope of the applicable rules.

FDP_IFF.1.3-NIAP-0407 Refinement: The TSF shall enforce the following information flow control
separation rule: If the mode of operation is not explicitly allowed, per FDP_IFF.1.2, then deny the
requested information flow.

11 A modification of CC text was performed in FDP_IFF.4.2. Rationale: The words “enforce the Partition Flow
Control policy to” were added to clarify that this requirement only applies to covert storage channels between
partitions.

FDP_IFF.4.2 Refinement: The TSF shall enforce the Partition Flow Control policy to prevent covert
storage channels between partitions.

13 A modification of CC text was performed in FMT_MTD.3.1. Rationale: The word “secure” was changed to
“valid” to indicate that this is intended to be a syntax check. The words “other than security attributes” were
added to clarify the types of TSF data that are covered by this requirement.

FMT_MTD.3.1 Refinement: The TSF shall ensure that only secure valid values are accepted for TSF data
other than security attributes.

14 A modification of CC text was performed in FPT_SEP.3.3. Rationale: The words “access control and/or” were
deleted since the TSF does not enforce any access control SFPs. The words “partition flow control and
cryptography” were added to clarify the types of SFPs that are required to be enforced in a domain distinct from
the remainder of the TSF.

FPT_SEP.3.3 Refinement: The TSF shall maintain the part of the TSF that enforces the access control and/or
information flow control, partition flow control and cryptography SFPs in a security domain for its own
execution that protects them from interference and tampering by the remainder of the TSF and by subjects
untrusted with respect to the TSP.

 60

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6. TOE Security Assurance
Requirements

101 This section contains the detailed security assurance requirements for Separation Kernels
supporting systems in environments requiring high robustness. The requirements contained in
this section are either selected from Part 3 of the CC or have been explicitly stated (with short
names ending in “_EXP”). Table 6.1 lists the explicitly stated assurance components.

Table 6.1 - Explicit Assurance Requirements

Explicit Component Component Behavior Name

ADO_DEL_EXP.2 Detection of Modification

ADV_ARC_EXP.1 Architectural Design

ADV_CMP_EXP.2 Detailed Composition Information

ADV_FSP_EXP.6 Formal Functional Specification With Indirect Error Mapping

ADV_HDW_EXP.1 Development Requirements for Hardware (TBD)

ADV_HLD_EXP.4 Semiformal High Level Design

ADV_IFA_EXP.1 Availability of Interface Information

ADV_IMP_EXP.3 Verified Implementation of the TSF

ADV_INI_EXP.1 Trusted Initialization (TBD)

ADV_INT_EXP.4 Minimization of Complexity

ADV_LLD_EXP.4 Semiformal Low Level Design

ADV_RCR_EXP.3 Formal Correspondence Demonstration

ADV_SPM_EXP.3 Formal TOE Security Policy Model

AGD_ADM_EXP.1 Administrator Guidance

AMA_AMP_EXP.1 Assurance Maintenance Plan

102 The combination of assurance components is equivalent to an Evaluated Assurance Level 6 with
augmentation (EAL6+). The augmented assurances required are in the areas of development,
independent testing, systematic flaw remediation and maintenance of assurance. The intended
TOE environment and the value of information processed by this environment establish the need
for the TOE to be evaluated at this EAL level5. These security assurance requirements are
summarized in Table 6.2. Note that flaw remediation (ALC_FLR) and maintenance of assurance
(AMA_AMP_EXP) have also been chosen even though the CC chose not to assign these
components to a specific EAL level.

5 Refer to the “Mutual Recognition of Common Criteria Certificates” section 1.3 to read conditions for the CC
certificate to be mutually recognized for PPs with EALs higher than 4.

 61

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

103 With respect to development requirements in the ADV classes, a structured document such as the
Common Criteria is sufficient to meet the requirements for semiformal specification.

 62

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Table 6.2 - Summary of Assurance Components by Evaluation Assurance Level
Assurance Class Assurance Family Assurance Components by Evaluation Assurance Level
 EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

ACM_AUT 1 1 2 2
ACM_CAP 1 2 3 4 4 5 5

Configuration
Management

ACM_SCP 1 2 3 3 3
ADO_DEL_EXP 1 1 2 2 (2) 3 Delivery and

Operation ADO_IGS 1 1 1 1 1 1 1
ADV_ARC_EXP (1) (1) (1) (1)
ADV_CMP_EXP (1) (2) (2) (2) (2) (2)
ADV_FSP_EXP (1) (2) (3) (3) (4) (5) (6)
ADV_HLD_EXP (1) (2) (2) (3) (4) (4)
ADV_IFA_EXP (1)
ADV_IMP_EXP (1) (1) (2) (3)
ADV_INT_EXP (2) (3) (4)
ADV_LLD_EXP (1) (2) (3) (4)
ADV_RCR (1) (1) (2) (2) (2) (3)

Development
(TSF)

ADV_SPM (1) (3) (3) (3)
AGD_ADM_EXP 1 1 1 1 1 (1) 1 Guidance

Documents AGD_USR 1 1 1 1 1 1 1
ALC_DVS 1 1 1 2 2
ALC_FLR (2) (3)
ALC_LCD 1 2 2 3

Life cycle
Support

ALC_TAT 1 2 3 3
Maintenance of
Assurance

AMA_AMP_EXP (1)

ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 2 2 3
ATE_FUN 1 1 1 1 2 2

Tests

ATE_IND 1 2

2 2 2 2 3

AVA_CCA_EXP 1 (2) 2
AVA_MSU 1 2 2 3 3
AVA_SOF 1 1 1 1 1 1

Vulnerability
Assessment

AVA_VLA 1 1 2 3 4 4

6.1 Configuration Management (ACM)
6.1.1 CM Automation (ACM_AUT)
6.1.1.1 Complete CM Automation (ACM_AUT.2)

ACM_AUT.2.1D The developer shall use a CM system.

ACM_AUT.2.2D The developer shall provide a CM plan.

ACM_AUT.2.1C The CM system shall provide an automated means by which only
authorized changes are made to the TOE implementation representation,

 63

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

and to all other configuration items.

ACM_AUT.2.2C The CM system shall provide an automated means to support the
generation of the TOE.

ACM_AUT.2.3C The CM plan shall describe the automated tools used in the CM
system.

ACM_AUT.2.4C The CM plan shall describe how the automated tools are used in the
CM system.

ACM_AUT.2.5C The CM system shall provide an automated means to ascertain the
changes between the TOE and its preceding version.

ACM_AUT.2.6C The CM system shall provide an automated means to identify all
other configuration items that are affected by the modification of a given
configuration item.

ACM_AUT.2.1E The evaluator shall confirm that the information provided meet all
requirements for content and presentation of evidence.

6.1.2 CM Capabilities (ACM_CAP)
6.1.2.1 Advanced Support (ACM_CAP.5)

ACM_CAP.5.1D The developer shall provide a reference for the TOE.

ACM_CAP.5.2D The developer shall use a CM system.

ACM_CAP.5.3D The developer shall provide CM documentation.

ACM_CAP.5.1C The reference for the TOE shall be unique to each version of the
TOE.

ACM_CAP.5.2C The TOE shall be labeled with its reference.

ACM_CAP.5.3C The CM documentation shall include a configuration list, a CM plan,
an acceptance plan, and integration procedures.

ACM_CAP.5.4C The configuration list shall describe the configuration items that
comprise the TOE.

ACM_CAP.5.5C The CM documentation shall describe the method used to uniquely
identify the configuration items.

ACM_CAP.5.6C The CM system shall uniquely identify all configuration items.

ACM_CAP.5.7C The CM plan shall describe how the CM system is used.

ACM_CAP.5.8C The evidence shall demonstrate that the CM system is operating in

 64

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

accordance with the CM plan.

ACM_CAP.5.9C The CM documentation shall provide evidence that all configuration
items have been and are being effectively maintained under the CM
system.

ACM_CAP.5.10C The CM system shall provide measures such that only authorized
changes are made to the configuration items.

ACM_CAP.5.11C The CM system shall support the generation of the TOE.

ACM_CAP.5.12C The acceptance plan shall describe the procedures used to accept
modified or newly created configuration items as part of the TOE.

ACM_CAP.5.13C The integration procedures shall describe how the CM system is
applied in the TOE manufacturing process.

ACM_CAP.5.14C The CM system shall require that the person responsible for
accepting a configuration item into CM is not the person who developed
it.

ACM_CAP.5.15C The CM system shall clearly identify the configuration items that
comprise the TSF.

ACM_CAP.5.16C The CM system shall support the audit of all modifications to the
TOE, including as a minimum the originator, date, and time in the audit
trail.

ACM_CAP.5.17C The CM system shall be able to identify the master copy of all
material used to generate the TOE.

ACM_CAP.5.18C The CM documentation shall demonstrate that the use of the CM
system, together with the development security measures, allow only
authorized changes to be made to the TOE.

ACM_CAP.5.19C The CM documentation shall demonstrate that the use of the
integration procedures ensures that the generation of the TOE is correctly
performed in an authorized manner.

ACM_CAP.5.20C The CM documentation shall demonstrate that the CM system is
sufficient to ensure that the person responsible for accepting a
configuration item into CM is not the person who developed it.

ACM_CAP.5.21C The CM documentation shall justify that the acceptance
procedures provide for an adequate and appropriate review of changes to
all configuration items.

ACM_CAP.5.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

 65

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.1.3 CM Scope (ACM_SCP)
6.1.3.1 Development Tools CM Coverage (ACM_SCP.3)

ACM_SCP.3.1D The developer shall provide CM documentation.

ACM_SCP.3.1C The CM documentation shall show that the CM system, as a
minimum, tracks the following: the TOE implementation representation,
design documentation, test documentation, user documentation,
administrator documentation, CM documentation, security flaws, and
development tools and related information.

ACM_SCP.3.2C The CM documentation shall describe how configuration items are
tracked by the CM system.

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.2 Delivery and Operation (ADO)
6.2.1 Delivery (ADO_DEL)

6.2.1.1 Explicit: Detection of Modification (ADO_DEL_EXP.2)

ADO_DEL_EXP.2D The developer shall document procedures for delivery of the
TOE or parts of it to the user.

ADO_DEL_EXP.2.2D The developer shall use the delivery procedures.

ADO_DEL_EXP.2.3D The developer shall use independent channels to deliver the
TOE code and to deliver the cryptographic keying materials used to verify
the delivery of the code.

ADO_DEL_EXP.2.4D The developer shall use cryptographic signature services in
accordance with the NIST-approved digital signature algorithm [selection:

(1) Digital Signature Algorithm (DSA) with a key size (modulus) of
2048 bits or greater,

(2) RSA Digital Signature Algorithm (rDSA with odd e) with a key size
(modulus) of 2048 bits or greater, or

(3) Elliptic Curve Digital Signature Algorithm (ECDSA) with a key size
of 256 bits or greater]

that meets the following:3

a) Case: Digital Signature Algorithm

 66

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

FIPS PUB 186-26, Digital Signature Standard, for signature
creation and verification processing; and ANSI Standard
X9.42-2001, Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography for generation of the domain
parameters7;

b) Case: RSA Digital Signature Algorithm (with odd e)

ANSI X 9.31-1998 (May 1998), Digital Signatures Using
Reversible Public Key Cryptography For The Financial
Services Industry (rDSA)8;

c) Case: Elliptic Curve Digital Signature Algorithm

ANSI X9.62-1998 (10 Oct 1999), Public Key Cryptography for
the Financial Services Industry: Elliptic Curve Digital Signature
Algorithm (ECDSA)

Application Note: A key size of 2048 bits is acceptable.

Application Note: For elliptic curve-based schemes the key size refers to the log2 of the order of
the base point. As the preferred approach for cryptographic signature, elliptic curves will be
required within a TBD time frame after all the necessary standards and other supporting
information are fully established.

ADO_DEL_EXP.2.5D The developer shall use cryptographic hashing functions that
employ a NIST-approved hash implementation of the Secure Hash
algorithm and message digest size of at least 256 bits that meets the
following: FIPS PUB 180-2.

ADO_DEL_EXP.2.1C The delivery documentation shall describe all procedures that
are necessary to maintain security when distributing versions of the TOE
to a user’s site.

ADO_DEL_EXP.2.2C The delivery documentation shall describe how the various
procedures and mechanisms provide for the detection of modifications, or
any discrepancy between the developer’s master copy and the version
received at the user site.

ADO_DEL_EXP.2.3C The delivery documentation shall describe how the various
procedures allow detection of attempts to masquerade as the developer,
even in cases in which the developer has sent nothing to the user’s site.

6 FIPS PUB 186-3 is under development. It will incorporate the signature creation and verification processing of
FIPS PUB 186-2, and the generation of domain parameters of ANSI X9.42. FIPS PUB 186-3 shall be used here
when it is finalized and approved.
7 Any pseudorandom RNG used in these schemes for generating private values shall be seeded by a nondeterministic
RNG (both types of RNGs meeting RNG requirements in this PP).

8 See previous footnote.

 67

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

ADO_DEL_EXP.2.4C The delivery documentation shall describe how independent
delivery channels are used to deliver the TOE code and to deliver the
cryptographic keying materials used to verify the delivery of the code.

ADO_DEL_EXP.2.5C The delivery documentation shall describe how to use
cryptographic mechanisms used to detect modification of the code of the
TOE during the initial delivery and subsequent updates.

ADO_DEL_EXP.2.6C The delivery documentation shall describe how to use
cryptographic mechanisms used to verify the integrity of the code of the
TOE to ensure that the on-site version matches the master distribution
version.

Application Note: It is assumed that the “cryptographic seal” of the TOE code will be verified
when the TOE code is received from the TOE developer and protected appropriately at the
user’s site prior to loading into non-volatile memory for inclusion into the hosting hardware.
However, for IT environments that cannot guarantee physical protection, additional
procedures to re-check the integrity of the TOE code prior to loading should be provided by
the IT environment.

ADO_DEL_EXP.2.7C The delivery documentation shall describe how to use the
cryptographic mechanisms that interact with the TOE to verify a
guarantee delivery from the intended source.

ADO_DEL_EXP.2.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADO_DEL_EXP.2.2E The evaluator shall determine that the procedures provided
result in a trusted delivery.

6.2.2 Installation, Generation and Start-Up (ADO_IGS)
6.2.2.1 Installation, Generation and Start-Up Procedures (ADO_IGS.1)

Application Note: This section is intended to address the requirements for configuring the TOE to
be in a TOE Evaluated Configuration (TEC). Requirements for administrator guidance to
correctly use TOE mechanisms (e.g., boot, initialization) to achieve an initial secure state are
addressed in AGD_ADM.

ADO_IGS.1.1D The developer shall document procedures necessary for the secure
installation, generation, and start-up of the TOE.

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure
installation, generation, and start-up of the TOE.

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_IGS.1.2E The evaluator shall determine that the installation, generation, and
start-up procedures result in a secure configuration.

 68

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.3 Development (ADV)
6.3.1 Architectural Design (ADV_ARC)

6.3.1.1 Explicit: Architectural Design (ADV_ARC_EXP.1)

ADV_ARC_EXP.1.1D The developer shall provide the architectural design of the
TSF.

ADV_ARC_EXP.1.1C The presentation of the architectural design of the TSF shall
be informal.

ADV_ARC_EXP.1.2C The architectural design shall be internally consistent.

ADV_ARC_EXP.1.3C The architectural design shall describe the design of the TSF
self-protection mechanisms.

ADV_ARC_EXP.1.4C The architectural design shall describe the design of the TSF
in detail sufficient to determine that the security enforcing mechanisms
cannot be bypassed.

ADV_ARC_EXP.1.5C The architectural design shall justify that the design of the
TSF achieves the self-protection function.

ADV_ARC_EXP.1.6C The architectural design shall justify that the design of the
TSF achieves the principle of least privilege specified in ADV_INT.

ADV_ARC_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_ARC_EXP.1.2E The evaluator shall analyze the architectural design and
other available TSF evidence to determine that FPT_SEP and
FPT_RVM are accurately implemented in the TSF.

6.3.2 Composition Information (ADV_CMP)
6.3.2.1 Explicit: Detailed Composition Information (ADV_CMP_EXP.2)

ADV_CMP_EXP.2.1D The developer shall provide composition information
addressed to system integrators.

ADV_CMP_EXP.2.1C The composition information shall describe the name,
purpose, parameters, parameter definitions, and manner of use of all IT
environment interfaces provided for use by the TSF.

ADV_CMP_EXP.2.2C The composition information shall describe how each TSFI

 69

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

can be invoked to use the IT environment interfaces.

ADV_CMP_EXP.2.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

6.3.3 Functional Specification (ADV_FSP)

6.3.3.1 Explicit: Formal Functional Specification With Indirect Error Mapping
(ADV_FSP_EXP.6)

ADV_FSP_EXP.6.1D The developer shall provide a functional specification.

ADV_FSP_EXP.6.1C The functional specification shall completely represent the
TSF.

ADV_FSP_EXP.6.2C The functional specification shall be internally consistent.

ADV_FSP_EXP.6.3C The functional specification shall describe the external TSF
interfaces (TSFI) using a formal style, supported by informal, explanatory
text where appropriate.

ADV_FSP_EXP.6.4C The functional specification shall designate each external TSFI
as security enforcing or security supporting.

ADV_FSP_EXP.6.5C The functional specification shall describe the purpose and
method of use of each external TSFI.

ADV_FSP_EXP.6.6C The functional specification shall identify and describe all
parameters associated with each external TSFI.

ADV_FSP_EXP.6.7C The functional specification shall describe all effects and all
exceptions associated with each external TSFI.

ADV_FSP_EXP.6.8C The functional specification shall describe all error messages
resulting from the effects and exceptions associated with each external
TSFI.

ADV_FSP_EXP.6.9C The functional specification shall indicate the TSFI associated
with each indirect error message.

ADV_FSP_EXP.6.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_FSP_EXP.6.2E The evaluator shall determine that the functional specification
is an accurate and complete instantiation of the user-visible TOE security
functional requirements.

 70

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.3.4 Development Requirements for Hardware
6.3.4.1 TBD

6.3.5 High-Level Design (ADV_HLD)
6.3.5.1 Explicit: Semiformal High-Level Design (ADV_HLD_EXP.4)

ADV_HLD_EXP.4.1D The developer shall provide the high-level design of the TOE

ADV_HLD_EXP.4.1C The high-level design shall describe the structure of the TOE
in terms of subsystems.

ADV_HLD_EXP.4.2C The high-level design shall be internally consistent.

ADV_HLD_EXP.4.3C The presentation of the high-level design of the TSF shall be
in semiformal style, supported by informal, explanatory text where
appropriate.

ADV_HLD_EXP.4.4C The high-level design shall describe the design of the TOE in
sufficient detail to determine what subsystems of the TOE are parts of the
TSF.

ADV_HLD_EXP.4.5C The high-level design shall provide a description of the
security functionality to be provided by the IT Environment.

ADV_HLD_EXP.4.6C The high-level design shall identify all subsystems in the TSF,
and designate them as either security enforcing or security supporting.

ADV_HLD_EXP.4.7C The high-level design shall describe the structure of all
subsystems of the TSF.

ADV_HLD_EXP.4.8C The high-level design shall describe the design of all behavior
for all subsystems of the TSF.

ADV_HLD_EXP.4.9C The high-level design shall describe any interactions between
the subsystems of the TSF.

ADV_HLD_EXP.4.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_HLD_EXP.4.2E The evaluator shall determine that the high-level design is an
accurate and complete instantiation of all user-visible TOE security
functional requirements, with the exception of FPT_SEP and FPT_RVM.

6.3.6 Information Availability (ADV_IFA)
6.3.6.1 Explicit: Availability of Interface Information (ADV_IFA_EXP.1)

ADV_IFA_EXP.1.1D The developer shall provide the composition information to

 71

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

system integrators.

ADV_IFA_EXP.1.2D The developer shall provide the TSF functional specification to
system integrators.

ADV_IFA_EXP.1.3D The developer shall provide the TSF test coverage analysis
and TSF test procedure descriptions to the system integrators.

ADV_IFA_EXP.1.4D The developer shall provide an Integrators’ Disclosure
Agreement.

ADV_IFA_EXP.1.1C The Integrators’ Disclosure Agreement shall identify the
documentation comprising the composition information, TSF functional
specification, TSF test coverage analysis, and TSF test procedure
descriptions to be supplied under the terms of the agreement.

ADV_IFA_EXP.1.2C The Integrators’ Disclosure Agreement shall specify terms
under which the TSF functional specification, TSF test coverage analysis,
and TSF test procedure descriptions will be made available to system
integrators.

ADV_IFA_EXP.1.3C The terms specified in the Integrators’ Disclosure Agreement
shall not place onerous requirements on system integrators in order to
obtain the TSF functional specification and TSF test coverage analysis.

ADV_IFA_EXP.1.1E The evaluator shall confirm that the information provided meets
all requirements for content and presentation of evidence.

ADV_IFA_EXP.1.2E The evaluator shall confirm that the documentation comprising
the composition information, TSF functional specification, TSF test
coverage analysis, and TSF test procedure descriptions identified in the
Integrators’ Disclosure Agreement completely and accurately reflects the
evidence supplied by the developer during the evaluation of the TOE.

6.3.7 Implementation Representation (ADV_IMP)

6.3.7.1 Explicit: Verified Implementation of the TSF (ADV_IMP_EXP.3)

ADV_IMP_EXP.3.1D The developer shall provide the implementation representation
for the entire TSF.

ADV_IMP_EXP.3.2D The developer shall provide any additional information
necessary to interpret the implementation representation supplied.

ADV_IMP_EXP.3.3D The developer shall supply the implementation of the software
and firmware portions of the TSF.

ADV_IMP_EXP.3.4D The developer shall provide implementation information for the
software and firmware portions of the TSF implementation.

 72

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

ADV_IMP_EXP.3.5D The developer shall supply tools, and their associated
documentation, used to debug the software and firmware portions of the
TSF implementation.

ADV_IMP_EXP.3.1C The implementation representation shall unambiguously define
the TSF to a level of detail such that the TSF can be generated without
further design decisions, and are suitable so that they could be directly
transformed to the implementation itself.

ADV_IMP_EXP.3.2C The additional information shall describe any conventions,
directives, or other constructs necessary to determine the portions of the
implementation representation that will be used when the implementation
representation is transformed into the implementation itself.

ADV_IMP_EXP.3.3C The implementation information shall describe the format of the
external representation of the implementation.

ADV_IMP_EXP.3.4C The implementation information shall map the implementation
representation to the external representation of the implementation.

ADV_IMP_EXP.3.5C The implementation information shall provide a detailed
description of the process(es) by which the external representation of the
implementation is loaded and executed.

ADV_IMP_EXP.3.6C The documentation of the tools used for debugging shall be
sufficient to allow use of the debugging tools for investigating the behavior
of the TSF.

ADV_IMP_EXP.3.1E The evaluator shall confirm that the information provided meets
all requirements for content and presentation of evidence.

ADV_IMP_EXP.3.2E The evaluator shall determine that the implementation
representation is an accurate and complete instantiation of the TOE
security functional requirements.

ADV_IMP_EXP.3.3E The evaluator shall confirm, through use of the supplied
debugging tools and direct examination of the implementation, that the
implementation provided is an accurate and complete instantiation of the
TOE security functional requirements.

6.3.8 Trusted Initialization (ADV_INI)
6.3.8.1 Explicit: Trusted Initialization (ADV_INI_EXP.1

ADV_INI_EXP.1.1 The TOE shall provide procedures and/or mechanisms to ensure
that the TSF configuration data reflects the user’s intention regarding
partitioning and information flow.

ADV_INI_EXP.1.2 The TOE shall provide cryptographic mechanisms using TSF-
provided cryptographic functions to detect modification of the TSF

 73

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

configuration data after it is created.

 ADV_INI_EXP.1.3D The TOE shall provide cryptographic mechanisms using TSF-
provided cryptographic functions to verify the integrity of the TSF
configuration data prior to loading into non-volatile memory for inclusion
into the hosting hardware.

ADV_INI_EXP.1.4D The TOE shall provide cryptographic mechanisms using TSF-
provided cryptographic functions to detect modification of the code of the
TOE during the initial delivery and subsequent updates.

ADV_INI_EXP.1.5D The TOE shall provide cryptographic mechanisms using TSF-
provided cryptographic functions to verify the integrity of the code of the
TOE to ensure that the on-site version matches the master distribution
version.

ADV_INI_EXP.1.6D The TOE shall provide cryptographic mechanisms to guarantee
delivery from the intended source.

ADV_INI_EXP.1.7D The TOE shall provide a boot mechanism to bring the TSF
implementation (code) and TSF data into the TSF security domain, and
an initialization mechanism to initialize the TSF to an initial secure state.

Application Note: See Boot and Initialization functions in Figure 2-2.

ADV_INI_EXP.1.8D The TOE shall provide an initialization mechanism to provide
restrictive defaults for all security attributes that are not explicitly set the
administrator.

ADV_INI_EXP.1.9D The TOE shall provide an initialization mechanism that shall
[assignment: list of the actions to take] upon detection of the following
conditions: [assignment: list of detectable initialization errors and failures
that prevent the establishment of an initial secure state for the TSF.]

Application Note: This requirement is intended to provide assurance that the initialization code is
capable of detecting and handling anomalies during the boot process during which the initial
secure state is not yet established.

ADV_INI_EXP.1.10D The TOE shall provide a load mechanism to correctly convert
to the TSF code and/or configuration data into a TSF-usable form.

ADV_INI_EXP.1.1E The evaluator shall determine that the configuration data
generation mechanisms provided result in a correct configuration data.

ADV_INI_EXP.1.2E The evaluator shall determine that the delivery mechanisms
provided result in a trusted delivery.

ADV_INI_EXP.1.3E The evaluator shall determine that the delivery mechanisms
provided result in a trusted delivery.

 74

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

ADV_INI_EXP.1.4E The evaluator shall determine that the boot and initialization
mechanisms provided result in an initial secure state of the TOE.

ADV_INI_EXP.1.5E The evaluator shall determine that the load mechanism provided
result in a correct conversion of the TSF code and/or configuration data
into a TSF-useable form.

6.3.9 TSF Internals (ADV_INT)
6.3.9.1 Explicit: Minimization of Complexity (ADV_INT_EXP.4)

ADV_INT_EXP.4.1D The developer shall design and structure the TSF using
modular decomposition.

ADV_INT_EXP.4.2D The developer shall use sound software engineering principles
to achieve the modular decomposition of the TSF.

ADV_INT_EXP.4.3D The developer shall design the modules such that they exhibit
good internal structure and are not overly complex.

ADV_INT_EXP.4.4D The developer shall design all TSF modules such that they
exhibit only functional, sequential, or communicational cohesion, with
limited exceptions.

ADV_INT_EXP.4.5D The developer shall design all TSF modules such that they
exhibit only call coupling, with limited exceptions of common coupling.

ADV_INT_EXP.4.6D The developer shall implement TSF modules using coding
standards that result in good internal structure that is not overly complex.

ADV_INT_EXP.4.7D The developer shall design and structure the TSF in a layered
fashion that minimizes mutual dependencies between the layers of the
design.

ADV_INT_EXP.4.8D The developer shall design and structure the TSF such that
interactions between layers are initiated from a higher layer in the
hierarchy down to a lower layer in the hierarchy with limited exceptions.

ADV_INT_EXP.4.9D The developer shall ensure that unused or redundant code are
excluded from the TSF, with limited exceptions.

ADV_INT_EXP.4.10D The developer shall ensure that code that is not relevant for
enforcing or supporting the TSP(s) are excluded from the TSF modules,
with limited exceptions.

ADV_INT_EXP.4.11D The developer shall provide a software architectural
description.

ADV_INT_EXP.3.7D The developer shall design and structure the TSF in such a
way that the principle of least privilege is achieved with respect to TSF

 75

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

modules.

ADV_INT_EXP.4.1C The software architectural description shall identify all the
modules of the TSF.

ADV_INT_EXP.4.2C The TSF modules shall be identical to those described by the
low level design (ADV_LLD.1.4C).

ADV_INT_EXP.4.3C The software architectural description shall describe the
process used for modular decomposition.

ADV_INT_EXP.4.4C The software architectural description shall describe how the
TSF design is a reflection of the modular decomposition process.

ADV_INT_EXP.4.5C The software architectural description shall include the coding
standards used in the development of the TSF.

ADV_INT_EXP.4.6C The software architectural description shall provide a
justification, on a per module basis, of any deviations from the coding
standards.

ADV_INT_EXP.4.7C The software architectural description shall include a coupling
analysis that describes intermodule coupling for all TSF modules.

ADV_INT_EXP.4.8C The software architectural description shall provide a
justification, on a per module basis, for any coupling or cohesion exhibited
by modules of the TSF, other than those permitted.

ADV_INT_EXP.4.9C The software architectural description shall provide a
justification, on a per module basis, that the modules of the TSF are not
overly complex.

ADV_INT_EXP.4.10C The software architectural description shall describe the
layering architecture and shall describe the services that each layer
provides.

ADV_INT_EXP.4.11C The software architectural description shall identify the
modules contained in each layer.

ADV_INT_EXP.4.12C The software architectural description shall identify all
interactions between layers of the TSF.

ADV_INT_EXP.4.13C The software architectural description shall provide a
justification of interactions that are initiated from a lower layer to a higher
layer.

ADV_INT_EXP.4.14C The software architectural description shall show that mutual
dependencies have been minimized, and justify those that remain.

ADV_INT_EXP.4.15C The software architectural description shall describe how the

 76

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

entire TSF has been structured to minimize complexity.

ADV_INT_EXP.4.16C The software architectural description shall justify the
inclusion of any unused or redundant code in the TSF.

ADV_INT_EXP.4.16C The software architectural description shall justify the
inclusion of any non-TSP-enforcing modules in the TSF.

ADV_INT_EXP.4.17C The software architectural description shall describe how the
entire TSF has be structured to achieve least privilege.

ADV_INT_EXP.4.1E The evaluator shall confirm that the information provided meets
all requirements for content and presentation of evidence.

ADV_INT_EXP.4.2E The evaluator shall perform a cohesion analysis for the
modules that substantiates the type of cohesion claimed for a subset of
TSF modules.

ADV_INT_EXP.4.3E The evaluator shall perform a complexity analysis for all TSF
modules.

ADV_INT_EXP.3.4E The evaluator shall confirm that the entire TSF has been
structured to achieve least privilege.

6.3.10 Low-level Design (ADV_LLD)
6.3.10.1 Explicit: Semi-Formal Low-Level Design (ADV_LLD_EXP.4)

ADV_LLD_EXP.4.1D The developer shall provide the low-level design of the TSF.

ADV_LLD_EXP.4.1C The presentation of the low-level design shall be semi-formal
style, supported by informal, explanatory text where appropriate.

ADV_LLD_EXP.4.2C The presentation of the low-level design shall be separate
from the implementation representation.

ADV_LLD_EXP.4.3C The low-level design shall be internally consistent.

ADV_LLD_EXP.4.4C The low-level design shall identify and describe data that are
common to more than one module, where any of the modules is a
security-enforcing module.

ADV_LLD_EXP.4.5C The low-level design shall describe the TSF in terms of
modules.

ADV_LLD_EXP.4.6C The low-level design shall describe each module in terms of its
purpose, interfaces, return values from those interfaces, called interfaces
to other modules, and global variables.

ADV_LLD_EXP.4.7C For each module, the low-level design shall provide an

 77

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

algorithmic description detailed enough to represent the TSF
implementation.

Application Note: An algorithmic description contains sufficient detail such that two different
programmers would produce functionally-equivalent code, although data structures,
programming methods, etc. may differ.

ADV_LLD_EXP.4.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_LLD_EXP.4.2E The evaluator shall determine that the low-level design is an
accurate and complete instantiation of all TOE security functional
requirements, with the exception of FTP_SEP and FPT_RVM.

6.3.11 Representation Correspondence (ADV_RCR)
6.3.11.1 Explicit: Formal Correspondence Demonstration (ADV_RCR_EXP.3)

Application Note: The developer must either demonstrate or prove correspondence, as described
in the requirements below, commensurate with the level or rigor of presentation style. For
example, correspondence must be proven when corresponding representations are formally
specified.

ADV_RCR_EXP.3.1D The developer shall provide a correspondence between all the
SFRs specified in the ST and the TSFIs specified in the functional
specification.

ADV_RCR_EXP.3.2D The developer shall provide a correspondence between the
TSFIs and all the subsystems defined in the high-level design.

ADV_RCR_EXP.3.3D The developer shall provide a correspondence between the
subsystems and the modules defined in the low-level design.

ADV_RCR_EXP.3.4D The developer shall provide a correspondence between the
modules and the implementation representation.

ADV_RCR_EXP.3.5D The developer shall provide a correspondence analysis that
the SFRs are completely and accurately realized by the TSFI.

ADV_RCR_EXP.3.1C The correspondence shall indicate where the functionality
presented at the more abstract TSF representation is reflected in the less
abstract TSF representation.

ADV_RCR_EXP.3.2C The correspondence analysis between the SFRs and the
TSFI shall be formal.

ADV_RCR_EXP.3.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_RCR_EXP.3.2E The evaluator shall determine the accuracy of the proofs of
correspondence by selectively verifying the formal analysis.

 78

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.3.12 Security Policy Modeling (ADV_SPM)
6.3.12.1 Explicit: Formal TOE Security Policy Model (ADV_SPM_EXP.3)

ADV_SPM_EXP.3.1D The developer shall provide a TSP model.

ADV_SPM_EXP.3.2D The developer shall demonstrate correspondence between
the functional specification and the following policies of the TSP model:
[assignment: list of semiformally-stated policies TSP model].

ADV_SPM_EXP.3.3D The developer shall prove correspondence between the
functional specification and the following policies of the TSP model:
[assignment: list of formally-stated policies TSP model].

ADV_SPM_EXP.3.1C The TSP model shall formally describe the rules and
characteristics of all policies of the TSP that can be formally modeled and
shall semiformally describe the rules and characteristics of other policies
of the TSP.

ADV_SPM_EXP.3.2C The TSP model shall include a rationale that demonstrates
that it is consistent and complete with respect to all policies of the TSP.

ADV_SPM_EXP.3.3C The demonstration of correspondence between the TSP
model and the functional specification shall show that all of the TSFI in
the functional specification are consistent and complete with respect to
the TSP model.

ADV_SPM_EXP.3.4C Where the functional specification is semiformal, the
demonstration of correspondence between the TSP model and the
functional specification shall be semiformal.

ADV_SPM_EXP.3.5C Where the functional specification is formal, the proof of
correspondence between the semiformally-stated portions of the TSP
model and the functional specification shall be semiformal.

ADV_SPM_EXP.3.6C Where the functional specification is formal, the proof of
correspondence between the formally-stated portions of the TSP model
and the functional specification shall be formal.

ADV_SPM_EXP.3.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

6.4 Guidance Documents (AGD)
6.4.1 Administrator Guidance (AGD_ADM)
6.4.1.1 Explicit: Administrator Guidance (AGD_ADM_EXP.1)

AGD_ADM_EXP.1.1D The developer shall provide administrator guidance

 79

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

addressed to system administrative personnel.

AGD_ADM_EXP.1.1C The administrator guidance shall describe the administrative
functions and interfaces available to the administrator of the TOE.

AGD_ADM_EXP.1.2C The administrator guidance shall describe how to administer
the TOE in a secure manner.

AGD_ADM_EXP.1.3C The administrator guidance shall contain warnings about
functions and privileges that should be controlled in a secure processing
environment.

AGD_ADM_EXP.1.4C The administrator guidance shall describe all assumptions
regarding user behavior that are relevant to secure operation of the TOE.

AGD_ADM_EXP.1.5C The administrator guidance shall describe all security
parameters under the control of the administrator, indicating secure
values as appropriate.

AGD_ADM_EXP.1.6C The administrator guidance shall describe each type of
security-relevant event relative to the administrative functions that need to
be performed, including changing the security characteristics of entities
under the control of the TSF.

AGD_ADM_EXP.1.7C The administrator guidance shall be consistent with all other
documentation supplied for evaluation.

AGD_ADM_EXP.1.8C The administrator guidance shall describe all security
requirements for the IT environment that are relevant to the administrator.

AGD_ADM_EXP.1.9C The administrator guidance shall document procedures
necessary for the correct generation of the TSF configuration data.

AGD_ADM_EXP.1.10C The administrator guidance shall describe the steps
necessary for correct generation of the TSF configuration data.

AGD_ADM_EXP.1.11C The administrator guidance shall document procedures to
grant to each subject in the TSC the most restrictive set of authorizations
and information flows needed for the performance of authorized tasks.

AGD_ADM_EXP.1.12C The administrator guidance shall describe the steps
necessary for granting to each subject in the TSC the most restrictive set
of authorizations and information flows needed for the performance of
authorized tasks.

AGD_ADM_EXP.1.13C The administrator guidance shall document procedures
necessary for using the load mechanism to convert the TSF code and/or
data into a TSF-usable form.

AGD_ADM_EXP.1.14C The administrator guidance shall describe the steps

 80

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

necessary for using the load mechanism to convert the TSF code and/or
data into a TSF-usable form.

AGD_ADM_EXP.1.15C The administrator guidance shall document procedures
necessary for using the boot and initialization mechanisms to bring the
TSF into an initial secure state.

AGD_ADM_EXP.1.16C The administrator guidance shall describe the steps
necessary for using the boot and initialization mechanisms to bring the
TSF into an initial secure state.

AGD_ADM_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

AGD_ADM_EXP.1.2E The evaluator shall determine that the configuration
generation procedures result in TSF configuration data that reflects the
user’s intention regarding partitioning and information flow.

AGD_ADM_EXP.1.3E The evaluator shall determine that the TOE is configured to
grant to each subject in the TSC the most restrictive set of authorizations
and information flows needed for the performance of authorized tasks.

AGD_ADM_EXP.1.4E The evaluator shall determine that the load procedures result
in a form of the TSF code and/or data that is useable by the TSF.

AGD_ADM_EXP.1.5E The evaluator shall determine that the boot and initialization
procedures result in an initial secure state of the TSF.

6.4.2 User Guidance (AGD_USR)
6.4.2.1 User Guidance (AGD_USR.1)

AGD_USR.1.1D The developer shall provide user guidance.

AGD_USR.1.1C The user guidance shall describe the functions and interfaces
available to the non-administrative users of the TOE.

AGD_USR.1.2C The user guidance shall describe the use of user-accessible
security functions provided by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about user-accessible
functions and privileges that should be controlled in a secure processing
environment.

AGD_USR.1.4C The user guidance shall clearly present all user responsibilities
necessary for secure operation of the TOE, including those related to
assumptions regarding user behavior found in the statement of TOE
security environment.

 81

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

AGD_USR.1.5C The user guidance shall be consistent with all other documentation
supplied for evaluation.

AGD_USR.1.6C The user guidance shall describe all security requirements for the IT
environment that are relevant to the user.

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.5 Life Cycle Support (ALC)
6.5.1 Development Security (ALC_DVS)
6.5.1.1 Sufficiency of Security Measures (ALC_DVS.2)

ALC_DVS.2.1D The developer shall produce development security documentation.

ALC_DVS.2.1C The development security documentation shall describe all the
physical, procedural, personnel, and other security measures that are
necessary to protect the confidentiality and integrity of the TOE design
and implementation in its development environment.

ALC_DVS.2.2C The development security documentation shall provide evidence that
these security measures are followed during the development and
maintenance of the TOE.

ALC_DVS.2.3C The evidence shall justify that the security measures provide the
necessary level of protection to maintain the confidentiality and integrity of
the TOE.

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_DVS.2.2E The evaluator shall confirm that the security measures are being
applied.

6.5.2 Flaw Remediation (ALC_FLR)
6.5.2.1 Systematic Flaw Remediation (ALC_FLR.3)

ALC_FLR.3.1D The developer shall document the flaw remediation procedures.

ALC_FLR.3.2D The developer shall establish a procedure for accepting, and acting
upon user reports of security flaws and requests for corrections to those
flaws.

ALC_FLR.3.3D The developer shall designate one or more specific points of contact
for user reports and inquiries about security issues involving the TOE.

 82

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

ALC_FLR.3.1C The flaw remediation procedures documentation shall describe the
procedures used to track all reported security flaws in each release of the
TOE.

ALC_FLR.3.2C The flaw remediation procedures shall require that a description of
the nature and effect of each security flaw be provided, as well as the
status of finding a correction to that flaw.

ALC_FLR.3.3C The flaw remediation procedures shall require that corrective actions
be identified for each of the security flaws.

ALC_FLR.3.4C The flaw remediation procedures documentation shall describe the
methods used to provide flaw information, corrections and guidance on
corrective actions to TOE users.

ALC_FLR.3.5C The procedures for processing reported security flaws shall ensure
that any reported flaws are corrected and the correction issued to TOE
users.

ALC_FLR.3.6C The procedures for processing reported security flaws shall provide
safeguards that any corrections to these security flaws do not introduce
any new flaws.

ALC_FLR.3.7C The flaw remediation procedures shall include a procedure requiring
timely responses for the automatic distribution of security flaw reports and
the associated corrections to registered users who might be affected by
the security flaw.

ALC_FLR.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.5.3 Life Cycle Definition (ALC_LCD)
6.5.3.1 Standardized Life-Cycle Model (ALC_LCD.2)

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the
development and maintenance of the TOE.

ALC_LCD.2.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.2.3D The developer shall use a standardized life-cycle model to develop
and maintain the TOE.

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model
used to develop and maintain the TOE.

ALC_LCD.2.2C The life-cycle model shall provide for the necessary control over the
development and maintenance of the TOE.

ALC_LCD.2.3C The life-cycle definition documentation shall explain why the model

 83

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

was chosen.

ALC_LCD.2.4C The life-cycle definition documentation shall explain how the model
is used to develop and maintain the TOE.

ALC_LCD.2.5C The life-cycle definition documentation shall demonstrate
compliance with the standardized life-cycle model.

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.5.4 Tools and Techniques (ALC_TAT)
6.5.4.1 Compliance with Implementation Standards – All Parts (ALC_TAT.3)

ALC_TAT.3.1D The developer shall identify the development tools being used for the
TOE.

ALC_TAT.3.2D The developer shall document the selected implementation-
dependent options of the development tools.

ALC_TAT.3.3D The developer shall describe the implementation standards for all
parts of the TOE.

ALC_TAT.3.1C All development tools used for implementation shall be well-defined.

Application Note: The development tools include the compiler used to generate the TOE.

ALC_TAT.3.2C The documentation of the development tools shall unambiguously
define the meaning of all statements used in the implementation.

ALC_TAT.3.3C The documentation of the development tools shall unambiguously
define the meaning of all implementation-dependent options.

Application Note: This documentation includes the compiler options used during the generation of
the TOE.

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have
been applied.

 84

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.6 Ratings Maintenance (AMA)
6.6.1 Assurance Maintenance Plan (AMA_AMP)
6.6.1.1 Explicit: Assurance Maintenance Plan (AMA_AMP_EXP.1)

AMA_AMP_EXP.1.1D - The developer shall provide an AM Plan.

AMA_AMP_EXP.1.1C - The AM Plan shall identify the assurance baseline.

AMA_AMP_EXP.1.2C - The AM Plan shall contain or reference a brief description of
the TOE, including the security functionality it provides.

AMA_AMP_EXP.1.3C - The AM Plan shall characterize the types of changes to the
assurance baseline that are covered by the plan.

AMA_AMP_EXP.1.4C - The AM Plan shall describe the planned TOM release-cycle.

AMA_AMP_EXP.1.5C - The AM Plan shall identify the planned schedule of AM
audits and the conditions for the end of maintenance.

AMA_AMP_EXP.1.5C - The AM Plan shall justify the planned schedule of AM audits
and the conditions for the end of maintenance.

AMA_AMP_EXP.1.6C - The AM Plan shall identify the processes that are necessary
for assigning, and ensuring currency of knowledge of, individual(s)
assuming the role of security analyst.

AMA_AMP_EXP.1.7C - The AM Plan shall define the relationship between the
security analyst and the development of the evidence.

AMA_AMP_EXP.1.8C - The AM Plan shall identify the qualifications that are
necessary for the individual(s) identified as the security analyst.

AMA_AMP_EXP.1.9C - The AM Plan shall describe the procedures by which
changes to the assurance baseline will be identified.

AMA_AMP_EXP.1.10C - The AM Plan shall describe the procedures that are
necessary to be applied to the TOM to maintain the assurance
established for the certified TOE.

AMA_AMP_EXP.1.11C - The AM Plan shall describe the controls and mechanisms
that are necessary to ensure that the procedures documented in the AM
Plan are followed.

AMA_AMP_EXP.1.1E - The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

 85

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

6.7 Testing (ATE)
6.7.1 Coverage (ATE_COV)
6.7.1.1 Rigorous Analysis of Coverage (ATE_COV.3)

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

ATE_COV.3.1C The analysis of the test coverage shall demonstrate the
correspondence between the tests identified in the test documentation
and the TSF as described in the functional specification.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate that the
correspondence between the TSF as described in the functional
specification and the tests identified in the test documentation is
complete.

ATE_COV.3.3C The analysis of the test coverage shall rigorously demonstrate that
all external interfaces of the TSF identified in the functional specification
have been completely tested.

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.7.2 Depth (ATE_DPT)
6.7.2.1 Testing: Low Level Design (ATE_DPT.2)

ATE_DPT.2.1D The developer shall provide the analysis of the depth of testing.

ATE_DPT.2.1C The depth analysis shall demonstrate that the tests identified in the
test documentation are sufficient to demonstrate that the TSF operates in
accordance with its high-level design and low-level design.

ATE_DPT.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.7.3 Functional Tests (ATE_FUN)
6.7.3.1 Ordered Functional Testing (ATE_FUN.2)

ATE_FUN.2.1D The developer shall test the TSF and document the results.

ATE_FUN.2.2D The developer shall provide test documentation.

ATE_FUN.2.1C The test documentation shall consist of test plans, test procedure
descriptions, expected test results and actual test results.

ATE_FUN.2.2C The test plans shall identify the security functions to be tested and

 86

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

describe the goal of the tests to be performed.

ATE_FUN.2.3C The test procedure descriptions shall identify the tests to be
performed and describe the scenarios for testing each security function.
These scenarios shall include any ordering dependencies on the results
of other tests.

ATE_FUN.2.4C The expected test results shall show the anticipated outputs from a
successful execution of the tests.

ATE_FUN.2.5C The test results from the developer execution of the tests shall
demonstrate that each tested security function behaved as specified.

ATE_FUN.2.6C The test documentation shall include an analysis of the test
procedure ordering dependencies.

ATE_FUN.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.7.4 Independent Testing (ATE_IND)
6.7.4.1 Independent Testing – Complete (ATE_IND.3)

ATE_IND.3.1D The developer shall provide the TOE for testing.

ATE_IND.3.1C The TOE shall be suitable for testing.

ATE_IND.3.2C The developer shall provide an equivalent set of resources to those
that were used in the developer's functional testing of the TSF.

ATE_IND.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.3.2E The evaluator shall test a subset of the TSF as appropriate to confirm
that the TOE operates as specified.

ATE_IND.3.3E The evaluator shall execute all tests in the test documentation to
verify the developer test results.

6.8 Vulnerability Assessment (AVA)
6.8.1 Covert Channel Analysis (AVA_CCA)
6.8.1.1 Explicit: Systematic Covert Channel Analysis (AVA_CCA_EXP.2)

AVA_CCA_EXP.2.1D The developer shall conduct a search for inter-partition covert
channels for each partition flow control policy.

AVA_CCA_EXP.2.2D For the cryptographic module, the developer shall conduct a

 87

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

search for covert channels for the leakage of critical cryptographic
security parameters whose disclosure would compromise the security
provided by the module.

AVA_CCA_EXP.2.3D The developer shall provide covert channel analysis
documentation.

AVA_CCA_EXP.2.1C The analysis documentation shall identify covert channels and
estimate their capacity.

AVA_CCA_EXP.2.2C The analysis documentation shall describe the procedures
used for determining the existence of covert channels, and the
information needed to carry out the covert channel analysis.

AVA_CCA_EXP.2.3C The analysis documentation shall describe all assumptions
made during the covert channel analysis.

AVA_CCA_EXP.2.4C The analysis documentation shall describe the method used
for estimating channel capacity, based on worst case scenarios.

AVA_CCA_EXP.2.5C The analysis documentation shall describe the worst case
exploitation scenario for each identified covert channel.

AVA_CCA_EXP.2.6C The analysis documentation shall provide evidence that the
method used to identify covert channels is systematic.

AVA_CCA_EXP.2.1E The NSA evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

AVA_CCA_EXP.2.2E The NSA evaluator shall confirm that the results of the covert
channel analysis show that the TOE meets its functional requirements.

AVA_CCA_EXP.2.3E The NSA evaluator shall selectively validate the covert
channel analysis through testing.

6.8.2 Misuse (AVA_MSU)
6.8.2.1 Analysis and Testing for Insecure States (AVA_MSU.3)

AVA_MSU.3.1D The developer shall provide guidance documentation.

AVA_MSU.3.2D The developer shall document an analysis of the guidance
documentation.

AVA_MSU.3.1C The guidance documentation shall identify all possible modes of
operation of the TOE (including operation following failure or operational
error), their consequences and implications for maintaining secure
operation.

AVA_MSU.3.2C The guidance documentation shall be complete, clear, consistent

 88

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

and reasonable.

AVA_MSU.3.3C The guidance documentation shall list all assumptions about the
intended environment.

AVA_MSU.3.4C The guidance documentation shall list all requirements for external
security measures (including external procedural, physical and personnel
controls).

AVA_MSU.3.5C The analysis documentation shall demonstrate that the guidance
documentation is complete.

AVA_MSU.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_MSU.3.2E The evaluator shall repeat all configuration and installation
procedures, and other procedures selectively, to confirm that the TOE
can be configured and used securely using only the supplied guidance
documentation.

AVA_MSU.3.3E The evaluator shall confirm that the use of the guidance
documentation allows all insecure states to be detected.

AVA_MSU.3.4E The evaluator shall confirm that the analysis documentation shows
that guidance is provided for secure operations in all modes of operation
of the TOE.

AVA_MSU.3.5E The evaluator shall perform independent testing to determine that
an administrator or user, with an understanding of the guidance
documentation, would reasonably be able to determine if the TOE is
configured and operating in the manner that is insecure.

6.8.3 Strength of TOE Security Functions (AVA_SOF)
6.8.3.1 Strength of TOE Security Function Evaluation (AVA_SOF.1)

Application Note: The security functions, for which strength of function claims are made, are
identified in section 5.2 (Cryptographic Support).

AVA_SOF.1.1D The developer shall perform a strength of TOE security function
analysis for each mechanism identified in the ST as having a strength of
TOE security function claim.

AVA_SOF.1.1C For each mechanism with a strength of TOE security function claim
the strength of TOE security function analysis shall show that it meets or
exceeds the minimum strength level defined in the PP/ST.

AVA_SOF.1.2C For each mechanism with a specific strength of TOE security
function claim the strength of TOE security function analysis shall show
that it meets or exceeds the specific strength of function metric defined in

 89

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

the PP/ST.

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that the strength claims are correct.

6.8.4 Vulnerability Analysis (AVA_VLA)
6.8.4.1 Highly Resistant (AVA_VLA.4)

AVA_VLA.4.1D The developer shall perform and document an analysis of the TOE
deliverables searching for ways in which a user can violate the TSP.

AVA_VLA.4.2D The developer shall document the disposition of identified
vulnerabilities.

AVA_VLA.4.1C The documentation shall show, for all identified vulnerabilities, that
the vulnerability cannot be exploited in the intended environment for the
TOE.

AVA_VLA.4.2C The documentation shall justify that the TOE, with the identified
vulnerabilities, is resistant to obvious penetration attacks.

AVA_VLA.4.3C The evidence shall show that the search for vulnerabilities is
systematic.

AVA_VLA.4.4C The analysis documentation shall provide a justification that the
analysis completely addresses the TOE deliverables.

AVA_VLA.4.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_VLA.4.2E The evaluator shall conduct penetration testing, building on the
developer vulnerability analysis, to ensure the identified vulnerabilities
have been addressed.

AVA_VLA.4.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.4.4E The evaluator shall perform independent penetration testing, based
on the independent vulnerability analysis, to determine the exploitability of
additional identified vulnerabilities in the intended environment.

AVA_VLA.4.5E The evaluator shall determine that the TOE is resistant to penetration
attacks performed by an attacker possessing a high attack potential.

AVA_VLA.4.6E Refinement: The NSA evaluator shall perform an independent
vulnerability analysis and conduct independent penetration testing. 1

 90

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

End Notes

This section records the assurance requirements where deletions of Common Criteria text were
performed.
1 An additional requirement was added in ADV_VLA.4. Rationale: ADV_VLA.4.6E was added to require two

levels of independent vulnerability analysis and penetration testing that is necessary to support a high
robustness evaluation.

AVA_VLA.4.6E Refinement: The NSA evaluator shall perform an independent vulnerability analysis and
conduct independent penetration testing.

 91

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

7. Rationale
104 This section provides the rationale for the selection, creation, and use of security objectives and

requirements as defined in sections 4 and 5, respectively.

7.1 Security Objectives derived from Threats
105 Each of the identified threats to security is addressed by one or more security objectives. Table

7.1 below provides the mapping from security objectives to threats, as well as a rationale that
discusses how the threat is addressed. Definitions are provided (in italics) below each threat and
security objective so the PP reader can reference these without having to go back to sections 3
and 4.

Table 7.1 – Mapping of Security Objectives to Threats

Threat Objectives Addressing Threat Rationale

T.ADMIN_ERROR

An administrator may
incorrectly install or configure
the TOE, or install a corrupted
TOE resulting in ineffective
security mechanisms.

O.ADMIN_GUIDANCE

The TOE will provide administrators with the
necessary information for secure management
of the TOE.

O.INSTALL_GUIDANCE

The TOE will be delivered with the appropriate
installation guidance to establish and maintain
TOE security.

Improper or insufficient security policies and
mechanisms might be implemented if the
administrator is not properly trained. However,
if the administrator is provided sufficient
guidance for the installation
[O.INSTALL_GUIDANCE], configuration,
and management of the TOE
[O.ADMIN_GUIDANCE], the threat that the
administrator may incorrectly install, configure,
or manage the TOE, in a way that undermines
security, is reduced.

T.ALTERED_DELIVE
RY

The TOE may be corrupted or
otherwise modified during
delivery such that the on-site
version does not match the
master distribution version.

O.TRUSTED_DELIVERY

The integrity of the TOE must be protected
during the initial delivery and subsequent
updates, and verified to ensure that the on-site
version matches the master distribution version.

O.CRYPTOGRAPHIC_SERVICES

The TOE will use cryptographic mechanisms to
protect the integrity of TOE code and data as it
resides within the system and when it is
transmitted to other systems. The TOE will also
use cryptographic mechanisms to verify the
integrity of the TSF code and configuration data
during initialization. The cryptographic
mechanism will use NIST FIPS validated
cryptography as a baseline with additional NSA-
approved methods.

O.CRYPTOGRAPHIC_PROTECTIO
N

The TOE will support separation of the
cryptography from the rest of the TSF.

To mitigate this threat,
O.TRUSTED_DELIVERY requires integrity
protection of the TOE. Checking the integrity
of the TOE during initial delivery and
subsequent updates is sufficient to determine if
the TOE is corrupted or modified.

O.CRYPTOGRAPHIC_SERVICES requires
the use of cryptographic integrity mechanisms
to provide a greater level of confidence that the
integrity of the code of the TOE is protected.

O.CRYPTOGRAPHIC_PROTECTION affords
additional protection for the cryptography.
This additional protection helps to protect the
cryptography against compromise from
accidental interference (e.g. coding errors) and
malicious untrusted subjects.

 92

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Threat Objectives Addressing Threat Rationale

T.BAD_RECOVERY

The TOE may be placed in an
insecure state as a result of
unsuccessful recovery from a
system failure or discontinuity.

O.RECOVERY

Procedures and/or mechanisms will be provided
to assure that recovery, such as from system
failure or discontinuity, is obtained without a
protection compromise.

O.CRYPTOGRAPHIC_SERVICES

The TOE will use cryptographic mechanisms to
protect the integrity of TOE code and data as it
resides within the system and when it is
transmitted to other systems. The TOE will also
use cryptographic mechanisms to verify the
integrity of the TSF code and configuration data
during initialization. The cryptographic
mechanism will use NIST FIPS validated
cryptography as a baseline with additional NSA-
approved methods.

O.CRYPTOGRAPHIC_PROTECTIO
N

The TOE will support separation of the
cryptography from the rest of the TSF.

O.CORRECT_TSF_OPERATION

The TOE will provide a capability to test the TSF
to ensure the correct operation of the TSF during
normal operation.

O.TSF_INTEGRITY

The TOE will be able to verify the integrity of the
TSF code and data.

If recovery from a system failure or
discontinuity is unsuccessful, the security
condition of the TOE may be unknown. To
mitigate this threat, O.RECOVERY provides
procedures and/or mechanisms to ensure that
recovery without a protection compromise is
obtained.

O.CRYPTOGRAPHIC_SERVICES requires
the use of cryptographic integrity mechanisms
to provide a greater level of confidence that the
integrity of the code and data of the TOE is
protected.

O.CRYPTOGRAPHIC_PROTECTION affords
additional protection for the cryptography.
This additional protection helps to protect the
cryptography against compromise from
accidental interference (e.g. coding errors) and
malicious untrusted subjects.

O.CORRECT_TSF_OPERATION requires
tests to be performed during automated
recovery to demonstrate the correct operation
of the TSF’s implementation and the integrity
of the TSF (hardware and software).

O.TSF_INTEGRITY provides the mechanisms
to verify the integrity of the TSF code and data
thus ensuring protection after a failure.

T.COVERT_CHANNEL
_EXPLOIT

An unauthorized information
flow may occur between
partitions as a result of covert
channel exploitation.

O.COVERT_CHANNEL_ANALYSIS

The TOE will undergo appropriate covert
channel analysis by NSA to demonstrate that the
TOE meets its functional requirement.

OE.CHANNELS

If the residual risk from covert channels is a
concern, the applications executing on the TOE
must be trusted with assurance commensurate
with the value of the IT assets protected by the
TOE.

Unauthorized information flow may occur
between partitions as a result of covert channel
exploitation.
O.COVERT_CHANNEL_ANALYSIS
mitigates this threat by validating the vendor’s
covert channel analysis through testing and
analysis.

OE.CHANNELS mitigates this threat by
requiring that applications capable of
exploiting residual channels are trusted not to
do so.

T.CRYPTO
_COMPROMISE

A malicious user or process
may cause key, data or
executable code associated
with the cryptographic
functionality to be
inappropriately accessed
(viewed, modified, or deleted),

OE.PHYSICAL

Physical security will be provided for the TOE by
the IT environment commensurate with the value
of the IT assets protected by the TOE.

O.CRYPTOGRAPHIC_PROTECTION

The TOE will support separation of the
cryptography from the rest of the TSF.

The cryptography is afforded external
protection from viewing, modification, or
deletion by malicious users through physical
security measures provided by the IT
environment [OE.PHYSICAL].

Further, as part of the TOE’s security functions
(TSF), the cryptography is afforded internal
protection from viewing, modification, or

 93

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Threat Objectives Addressing Threat Rationale
thus compromising the
cryptographic mechanisms
and the data protected by
those mechanisms.

O.REFERENCE_MONITOR

The TOE will maintain a domain for its own
execution that protects itself and its resources
from external interference, tampering, or
unauthorized disclosure.

deletion by malicious processes and users
through the domain isolation maintained by the
TOE for its own execution
[O.REFERENCE_MONITOR].

Within the TSF’s domain an additional
protection is applied to the cryptography
[O.CRYPTOGRAPHIC_PROTECTION]. This
additional protection helps to protect the
cryptography against compromise from
accidental interference (e.g. coding errors) and
malicious untrusted subjects.

T.INCORRECT_BOOT

The TSF implementation and
TSF data are not correctly
transferred into the TSF’s
execution domain.

O.CORRECT_BOOT

The TOE will provide mechanisms to correctly
transfer the TSF implementation and TSF data
into the TSF’s execution domain.

O.CORRECT_BOOT mitigates this threat by
requiring the TOE to provide mechanisms to
correctly transfer the TSF implementation and
TSF data into the TSF’s execution domain as
part of initialization.

T.INCORRECT_CONFI
G

The TSF configuration data
does not accurately reflect the
user’s intentions regarding
partitioning and information
flow.

O.CORRECT_CONFIG

The TOE will provide procedures and
mechanisms to generate the TSF configuration
data such that the TSF configuration data
accurately reflect the user’s intentions regarding
partitioning and information flow.

O.CORRECT_CONFIG mitigates this threat
by requiring the mechanisms used to generate
the TSF configuration data (e.g., a
configuration data generation tool) be included
as part of the TOE. Since the TSF’s policy
enforcement mechanisms depend on the
correctness of the TSF configuration data, it is
important that the mechanisms used to generate
the configuration data are subjected to analysis
and testing with developmental assurance
commensurate with the rest of the TOE.

T.INCORRECT_LOAD

The TSF code and/or
configuration data are not
correctly converted into a TSF-
useable form.

O.CORRECT_LOAD

The TOE will provide procedures and
mechanisms to correctly convert the TSF code
and/or configuration data into a TSF-useable
form.

O.CORRECT_LOAD mitigates this threat by
requiring the mechanisms used to convert the
TSF code and/or configuration data into a TSF-
useable form be included as part of the TOE.
Although these mechanisms are used off-line,
they must be developed with a level of
assurance commensurate with the rest of the
TOE, such that the integrity of the TSF code
and data can be preserved.

T.INSECURE_STATE

When the TOE is initially
started or restarted after a
failure, the security state of the
TOE may be in an insecure
state.

O.SECURE_STATE

The TOE will provide mechanisms to transition
the TSF to a secure state during start-up, re-
activation of the current flow policy configuration
data and activation of a new flow policy
configuration data.

O.TSF_INTEGRITY

The TOE will be able to verify the integrity of the
TSF code and data.

To mitigate this threat, O.SECURE_STATE
requires the TOE to provide the mechanisms to
initialize the TSF into a secure state during
start-up, re-activation of the current flow policy
configuration data and activation of a new flow
policy configuration data.

O.TSF_INTEGRITY provides the mechanisms
to verify the integrity of the TSF code and data
thus ensuring a secure state after a failure or
upon start-up.

T.POOR_DESIGN O.CHANGE_MANAGEMENT Intentional or unintentional errors may occur in
the requirement specification, design or

 94

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Threat Objectives Addressing Threat Rationale

Unintentional or intentional
errors in requirements
specification or design of the
TOE may occur, leading to
flaws that may be exploited by
a malicious subject.

The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled throughout the
TOE’s development.

O.SOUND_DESIGN

The TOE will be designed using sound design
principles and techniques. The TOE design,
design principles and design techniques will be
adequately and accurately documented.

O.VULNERABILITY_ANALYSIS_TES
T

The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

development of the TOE. To address this
threat, O.SOUND_DESIGN requires sound
design principles and techniques that help
prevent flaws in the TOE’s design by
eliminating errors in the logic.

In addition, O.CHANGE_MANAGEMENT
addresses this threat by requiring all changes to
the TOE and its development evidence be
analyzed, tracked and controlled throughout the
development cycle.

To verify that there are no intentional or
unintentional errors introduced in the design,
O.VULNERABILITY_ANALYSIS_TEST
demonstrates that the design of the TOE is
resistant to attacks that exercise these design
flaws and development errors.

T.POOR
_IMPLEMENTATION
Unintentional or intentional
errors in implementation of the
TOE design may occur,
leading to flaws that may be
exploited by a malicious
subject.

O.CHANGE_MANAGEMENT

The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled throughout the
TOE’s development.

O.FUNCTIONAL_TESTING

The TOE will undergo independent security
functional testing that demonstrates the TSF
satisfies the security functional requirements.

O.SOUND_IMPLEMENTATION

The implementation of the TOE will be an
accurate instantiation of its design.

O.VULNERABILITY_ANALYSIS_TES
T

The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

Intentional or unintentional errors may occur
when implementing the design of the TOE. To
address this threat,
O.SOUND_IMPLEMENTATION ensures that
the implementation is an accurate
representation of the design.

To ensure that an accurate representation of the
design is maintained,
O.CHANGE_MANAGEMENT ensures that all
changes to the TOE and its development
evidence are analyzed, tracked and controlled
throughout the development cycle.

To ensure that errors have not been introduced,
O.FUNCTIONAL_TESTING validates that the
TSF satisfies the security functional
requirements.

To further demonstrate that vulnerabilities are
not present,
O.VULNERABILITY_ANALYSIS_TEST
ensures correct implementation of the TOE.

T.POOR_TEST

Lack of or insufficient tests to
demonstrate that all TOE
security functions operate
correctly may result in
incorrect TOE behavior being
undiscovered.

O.CORRECT_TSF_OPERATION

The TOE will provide a capability to test the TSF
to ensure the correct operation of the TSF during
normal operation.

O.FUNCTIONAL_TESTING

The TOE will undergo independent security
functional testing that demonstrates the TSF
satisfies the security functional requirements.

O.VULNERABILITY_ANALYSIS_TES

Design analysis determines that a TOE’s
documented design satisfies its security
functional requirements. In order to ensure the
TOE’s design is correctly realized in its
implementation, the appropriate level of
functional testing of the TOE’s security
mechanisms must be performed during the
evaluation of the TOE.
O.FUNCTIONAL_TESTING ensures that
independent functional testing is performed to
demonstrate the TSF satisfies the security

 95

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Threat Objectives Addressing Threat Rationale
T

The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

functional requirements and the TOE’s security
mechanisms operate as documented.

While functional testing serves an important
purpose, it does not ensure the TSFI cannot be
used in unintended ways to circumvent the
TOE’s security policies.
O.VULNERABILITY_ANALYSIS_TEST
addresses this concern by requiring a
vulnerability analysis and penetration testing be
performed by NSA. This objective provides a
measure of confidence that the TOE does not
contain security flaws that may not be
identified through functional testing.

While these testing activities are a necessary
activity for successful completion of an
evaluation, this testing activity does not address
the concern that the TOE continues to operate
correctly and enforce its security policies
during normal operation. Some level of testing
must be available to authorized users to ensure
the TOE’s security mechanisms continue to
operate correctly once the TOE is fielded.
O.CORRECT_TSF_OPERATION ensures that
once the TOE is installed at a customer’s
location, the capability exists that the integrity
of the TSF (hardware and software) can be
demonstrated, and thus provides end users the
confidence that the TOE’s security policies
continue to be enforced.

T.RESIDUAL_DATA

A subject may gain
unauthorized access to data
through reallocation of TOE
resources from one subject to
another.

O.RESIDUAL_INFORMATION

The TOE will ensure that any data contained in a
protected resource is not released when the
resource is reallocated.

The sharing of hardware resources such as
primary and secondary storage components
between subjects introduces the potential for
information flow in violation of the TOE
security policy when hardware resources are
deallocated from one subject and allocated to
another. In order to prevent such unintended
consequences, the TOE prevents the
compromise of the TOE security policy
through mechanisms that ensure that residual
information cannot be accessed after the
resource has been reallocated
(O.RESIDUAL_INFORMATION). The intent
here is to prevent the unauthorized flow of
information that would violate the TOE
security policy.

T.RESOURCE
_EXHAUSTION

A malicious subject may block
others from system resources
(e.g., system memory,

O.RESOURCE_SHARING

The TOE shall provide mechanisms that mitigate
attempts to exhaust TOE resources (e.g.,
system memory, persistent storage, and

The sharing of resources (e.g., system memory,
and processing time) between subjects
introduces the potential for a malicious subject
to obstruct another subject from access to
resources via a resource exhaustion attack.

 96

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Threat Objectives Addressing Threat Rationale
persistent storage, and
processing time) via a
resource exhaustion attack.

processing time). O.RESOURCE_SHARING mitigates this
threat by requiring the TOE to allocate system
resources to partitions according to the
configuration data. The configuration data
provides the capability to allocate resources
such that over-allocation cannot occur.

T.TSF_COMPROMISE

A malicious subject may cause
TSF data or executable code
to be inappropriately accessed
(viewed, modified, or deleted).

OE.PHYSICAL

Physical security will be provided for the TOE by
the IT environment commensurate with the value
of the IT assets protected by the TOE.

O.REFERENCE_MONITOR

The TOE will maintain a domain for its own
execution that protects itself and its resources
from external interference, tampering, or
unauthorized disclosure.

The tampering with or destruction of TSF
hardware, software, or configuration data via
physical means is addressed by the physical
security controls present in the TOE
environment [OE.PHYSICAL].

O.REFERENCE_MONITOR addresses the
threat of tampering with or destruction of TSF
hardware, software, or configuration data by
other (non-physical) means. It ensures that the
TSF maintains a security domain for its own
execution that protects it from interference and
tampering by untrusted subjects and enforces
the separation between the security domains of
subjects within the TSC.

T.UNAUTHORIZED
_ACCESS

A subject may gain access to
resources and services for
which it is not authorized
according to the TOE security
policy.

OE.PHYSICAL

Physical security will be provided for the TOE by
the IT environment commensurate with the value
of the IT assets protected by the TOE.

O.ACCESS

The TOE will ensure that subjects gain only
authorized access to resources that it controls.

O.PROTECT

The TOE will provide mechanisms to protect
services and exported resources.

Unauthorized users may physically tamper with
the TOE hardware to gain unauthorized access
to TOE resources. To mitigate this threat,
OE.PHYSICAL restricts the physical access
only to authorized personnel.

Within the computing environment,
O.ACCESS only allows subjects to gain access
to resources for which they are authorized. At
the same time, O.PROTECT provides
mechanisms to provide self-protection for
services and integrity protection for exported
TSF data.

7.2 Objectives derived from Security Policies
106 Each of the identified security policies is addressed by one or more security objectives. Table

7.2 below provides the mapping from security objectives to security policies, as well as a
rationale that discusses how the policy is addressed. Definitions are provided (in italics) below
each policy and security objective so the PP reader can reference these without having to go back
to sections 3 and 4.

Table 7.2 – Mapping of Security Objectives to Security Policies

Security Policy Objectives Addressing Policy Rationale

 97

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Security Policy Objectives Addressing Policy Rationale

P.ACCOUNTABILITY

The TOE shall provide the capability to
make available information regarding
the occurrence of security relevant
events.

O.AUDIT_GENERATION

The TOE will provide the capability to detect
and generate audit records for security
relevant auditable events.

O.AUDIT_GENERATION supports this
policy by requiring the TOE to detect and
generate audit records upon the occurrence of
security relevant events.

P.CRYPTOGRAPHY

The TOE shall use NIST FIPS validated
cryptography as a baseline with
additional NSA-approved methods for
key management (i.e., generation,
access, distribution, destruction,
validation and packaging, handling, and
storage of keys) and for cryptographic
operations (i.e., encryption, decryption,
signature, hashing, key exchange, and
random number generation services).

O.CRYPTOGRAPHIC_SERVICES

The TOE will use cryptographic mechanisms
to protect the integrity of TOE code and data
as it resides within the system and when it is
transmitted to other systems. The TOE will
also use cryptographic mechanisms to verify
the integrity of the TSF code and
configuration data during initialization. The
cryptographic mechanism will use NIST
FIPS validated cryptography as a baseline
with additional NSA-approved methods.

The TOE does not provide cryptographic
services to applications. Hence this policy
only applies to cryptographic mechanisms
used internally by the TOE to satisfy the
trusted delivery and trusted recovery
requirements.
O.CRYPTOGRAPHIC_SERVICES requires
the use of validated and approved
cryptographic methods for key management
and cryptographic operations.

P.INDEPENDENT_TESTING

The TOE must undergo independent
testing.

O.FUNCTIONAL_TESTING

The TOE will undergo independent security
functional testing that demonstrates the TSF
satisfies the security functional
requirements.

O.VULNERABILITY_ANALYSIS_
TEST

The TOE will undergo independent
vulnerability analysis and penetration testing
by NSA to demonstrate the design and
implementation of the TOE does not allow
attackers with high attack potential to violate
the TOE’s security policies.

This policy requires the TOE to undergo
independent testing to verify its reliability and
security. O.FUNCTIONAL_TESTING
demonstrates the TSF satisfies the appropriate
security functional requirements.

O.VULNERABILITY_ANALYSIS_TEST
requires the TOE to undergo vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

P.LEAST_PRIVILEGE

The TOE shall be designed such that
the principle of least privilege is applied
to limit the damage that can result from
accident, error or unauthorized use.

O.INTERNAL_LEAST_PRIVILEG
E

The entire TSF will be structured to achieve
the principle of least privilege among TSF
modules.

O.INTERNAL_LEAST_PRIVILEGE requires
that the TSF be structured such that the
principle of least privilege is applied to the
internal software architecture of the TSF. A
structured design facilitates the analysis of the
TSF to ensure that the security policies are
enforced, thus limiting the damage that can
result from accident, error or unauthorized
use.

P.RATINGS_MAINTENANCE
A plan for procedures and processes to
maintain the TOE’s rating must be in
place to maintain the TOE’s rating once
it is evaluated..

O.RATINGS_MAINTENANCE

Procedures and processes to maintain the
TOE’s rating will be documented.

This policy requires the TOE developer to
provide a plan that documents the procedures
and processes to maintain the evaluated rating
that is ultimately awarded the TOE.
O.RATINGS_MAINTENANCE satisfies this
policy by requiring the TOE developer to
provide the required rating maintenance plan.

 98

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Security Policy Objectives Addressing Policy Rationale

P.SELECT_POLICY
The TOE shall provide the capability to
select and activate a complete set of
new policy configuration data. The TOE
shall ensure that the policy enforced
upon the activation of the new data is
consistent with the new con figuration
data.

O.MANAGE

The TOE will provide all the functions
necessary to support the administrative
users and authorized subjects in their
management of the configuration data, and
restrict these functions from use by
unauthorized subjects.

O.TSF_INTEGRITY

The TOE will be able to verify the integrity of
the TSF code and data.

This policy requires the TOE to allow the
policy configuration to be modified as a single
unit, either offline or during runtime. It also
requires the TOE to ensure that after
activation of the new policy, there are no
flows extant that are inconsistent with the new
policy. O.MANAGE restricts the online
access to the policy selection and activation
functions to authorized subjects.
O.TSF_INTEGRITY supports this policy by
ensuring the integrity of the new policy
configuration.

P.SYSTEM_INTEGRITY
The TOE shall provide the ability to
periodically validate its correct operation
and, with the help of administrators if
necessary, it must be able to recover
from any errors that are detected.

O.CORRECT_TSF_OPERATION

The TOE will provide a capability to test the
TSF to ensure the correct operation of the
TSF during normal operation.

O.RECOVERY

Procedures and/or mechanisms will be
provided to assure that recovery, such as
from system failure or discontinuity, is
obtained without a protection compromise.

This policy requires the TOE to 1)
periodically test itself to provide some
measure of confidence that the TOE is
operating in accordance with its security
policies, and 2) provide a means for the TOE
to recover from detectable errors in its
operation. O.CORRECT_TSF_OPERATION
supports this policy by requiring the TOE to
provide a capability to test the TSF to
demonstrate the correct operation of the TSF
in its operational environment.
O.RECOVERY satisfies this policy by
requiring the TOE to provide procedures
and/or mechanisms to ensure that the TOE can
recover from detectable errors.

P.USER_GUIDANCE

The TOE shall provide documentation
regarding the correct use of the TOE
security features.

O.USER_GUIDANCE

The TOE shall provide users with the
necessary information for secure use of the
TOE.

This policy requires that the TOE
documentation provide adequate information
for the secure use and operation of the TOE.
O.USER_GUIDANCE satisfies this policy by
requiring that the necessary user information
be provided.

P.VULNERABILITY
_ANALYSIS_AND_TEST

The TOE must undergo independent
vulnerability analysis and penetration
testing by NSA to demonstrate that the
TOE is resistant to an attacker
possessing a high attack potential.

O.VULNERABILITY_ANALYSIS_
TEST

The TOE will undergo independent
vulnerability analysis and penetration testing
by NSA to demonstrate the design and
implementation of the TOE does not allow
attackers with high attack potential to violate
the TOE’s security policies.

O.VULNERABILITY_ANALYSIS_TEST
satisfies this policy by ensuring that an
independent vulnerability analysis is
performed on the TOE and penetration testing
based on that analysis is performed. Having
an independent party perform the analysis
helps ensure objectivity and eliminates
preconceived notions of the TOE’s design and
implementation that may otherwise affect the
thoroughness of the analysis. The level of
analysis and testing requires that an attacker
with a high attack potential cannot
compromise the TOE’s ability to enforce its
security policies.

 99

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

7.3 Objectives derived from Assumptions
107 Each of the identified security assumptions is addressed by one or more security objectives.

Table 7.3 below provides the mapping from security objectives to security assumptions, as well
as a rationale that discusses how the assumption is addressed. Definitions are provided (in
italics) below each assumption and security objective so the PP reader can reference these
without having to go back to sections 3 and 4.

Table 7.3 – Mapping of Security Objectives to Assumptions

Assumption Objectives Addressing
Assumption

Rationale

A.CHANNELS

If the residual risk from covert channels is
a concern, it is assumed that the
applications executing on the TOE are
trusted with assurance commensurate with
the value of the IT assets protected by the
TOE.

OE.CHANNELS

If the residual risk from covert channels is
a concern, the applications executing on
the TOE must be trusted with assurance
commensurate with the value of the IT
assets protected by the TOE.

OE.CHANNELS addresses this assumption
by requiring that applications capable of
exploiting residual channels are trusted not to
do so. These applications are required to be
trusted with assurance commensurate with
the value of the IT assets protected by the
TOE.

A.LEAST_PRIVILEGE

It is assumed that the TOE will be
configured such that the principle of least
privilege is applied to limit the damage that
can result from accident, error or
unauthorized use.

OE.LEAST_PRIVILEGE

The TOE must be configured such that the
principle of least privilege is applied to limit
the damage that can result form accident,
error or unauthorized use.

OE.LEAST_PRIVILEGE addresses this
assumption by requiring the IT environment
to provide procedures to configure subjects
in accordance with the principle of least
privilege such that damages that can result
from accident, error or unauthorized use
could be effectively contained.

A.PHYSICAL

It is assumed that the IT environment
provides the TOE with appropriate
physical security commensurate with the
value of the IT assets protected by the
TOE.

OE.PHYSICAL

Physical security will be provided for the
TOE by the IT environment commensurate
with the value of the IT assets protected
by the TOE.

OE.PHYSICAL addresses this assumption
by requiring the IT environment to provide
physical security for the TOE that is
commensurate with the value of the IT assets
protected by the TOE.

A.TRUSTED_FLOWS

If a subject is allowed by the configuration
data to cause information flow in violation
of the partial ordering of information flows
between partitions, it is assumed that the
subject is trusted with assurance
commensurate with the value of the IT
assets in all partitions to which it has
access.

OE.TRUSTED_FLOWS

If a subject is allowed by the configuration
data to cause information flow in violation
of the partial ordering of information flows
between partitions, that subject must be
trusted with assurance commensurate with
the value of the IT assets in all partitions to
which it has access.

OE.TRUSTED_FLOWS addresses this
assumption by requiring that a subjects
capable of causing information flow in
violation of the partial ordering of
information flows between partitions be
trusted with assurance commensurate with
the value of the IT assets in all partitions to
which it has access.

The “partial ordering” requirement addresses
a significant characteristic of the class of
systems represented by this protection
profile.

Partitions between which flows occur in
violation of the partial ordering result in a
logical equivalence class of information in
those partitions, since all information can be
shared between the partitions. In some cases,
flows between partitions in violation of the

 100

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Assumption Objectives Addressing
Assumption

Rationale

partial ordering are useful when constructing
an application if it can be assured that only
certain information is permitted to flow in
violation of the partial ordering. If a subject
has insufficient assurance, then it may be
assumed to cause unintended flows between
the partitions.

While the subject-to-resource flow controls
can be used to prevent inter-partition flows
otherwise allowed by the partition-to-
partition flow rules, it is generally intractable
to determine which information in a partition
will be (e.g., transitively) allowed to flow
into another partition once the flow is
allowed by a partition-to-partition flow rule
and a subject-to-resource flow rule (e.g., to
support a guard or downgrader application).
Therefore, if such an inter-partition flow
were allowed, we would require of the
environment that the subject (e.g.,
application) have a level of trust that is
adequate to protect the information in both
the source and the destination partitions.

A.TRUSTED_INDIVIDUAL

If an individual is allowed to perform
procedures upon which the security of the
TOE may depend, it is assumed that the
individual is trusted with assurance
commensurate with the value of the IT
assets.

OE.TRUSTED_INDIVIDUAL

If an individual is allowed to perform
procedures upon which the security of the
TOE may depend, that individual must be
trusted with assurance commensurate with
the value of the IT assets.

OE.TRUSTED_INDIVIDUAL addresses
this assumption by requiring that any
individual who is allowed to perform
procedures that affect the security of the
TOE be trusted with assurance
commensurate with the value of the IT
assets. This requirement is allocated to the
IT environment because there are no
Identification & Authentication requirements
for the TOE.

7.4 Requirements Rationale
108 Each of the TOE security objectives identified in section 4 are addressed by one or more security

requirements. Table 7.4 below provides the mapping from security requirements to security
objectives, as well as a rationale that discusses how the security objective is met. Definitions are
provided (in italics) below each security objective so the PP reader can reference these without
having to go back to section 4.

Table 7.4 – Mapping of Security Requirements to Objectives

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

 101

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

O.ACCESS

The TOE will ensure that
subjects gain only authorized
access to resources that it
controls.

FDP_IFC.2

FDP_IFF.1

FPT_RVM.1

This objective requires the TOE to manage resources that it
controls such that subjects can only gain access to those
resources that they are permitted to use. The combination of
FDP_IFC.2, FDP_IFF.1 and FPT_RVM.1 satisfies this objective.

FDP_IFC.2 requires the TSF to enforce two SFPs, Information
Flow Control policy and Partition Flow Control policy, on all
subjects and partitions, all exported resources and all operations
that cause information to flow to and from all subjects and
between partitions.

FDP_IFF.1 specifies the policy rules to be enforced by the TSF
and the security attributes used by the enforcement rules. The
Information Flow Control policy rule requires the TSF to permit
an information flow between a subject and a resource only if it is
explicitly allowed by the configuration data. Similarly the
Partition Flow Control policy rule requires the TSF to permit an
information flow between partitions only if it is explicitly
allowed by the configuration data. The Separation rule requires
the TSF to deny all information flows unless the requested flow
is explicitly allowed by the configuration data.

FPT_RVM.1 ensures that the TSF makes policy decisions on all
attempts to access the TOE resources. Without this non-
bypassability requirement, the TSF could not be relied upon to
completely enforce the security policies.

O.ADMIN_GUIDANCE

The TOE will provide
administrators with the
necessary information for
secure management of the
TOE.

ADO_IGS.1

AGD_ADM_EXP.1

ADO_IGS.1 requires the developer to provide the procedures
necessary to install and start-up an instance of the TOE that was
evaluated, i.e., an evaluated configuration of the TOE.

AGD_ADM_EXP.1 requires the developer to provide
administrative guidance to configure and administer the TOE
securely for the IT environment within which it is intended to
operate. The necessary information for secure management of
the TOE include instructions on proper use of the administrative
functions, warnings about functions and privileges that should be
controlled, assumptions regarding user behavior, correct settings
of security parameters, and security requirements for the IT
environment.

O.AUDIT_GENERATIO
N

The TOE will provide the
capability to detect and
generate audit records for
security relevant auditable
events.

FAU_ARP.1

FAU_GEN.1

FAU_SEL.1

FPT_STM.1

FAU_ARP.1 requires the TSF to take the actions upon the
detection of failures of TSF self tests. By allowing the ST author
to assign the list of actions based on the intended use of the TOE,
this PP affords design flexibility to the ST authors.

FAU_GEN.1 defines the set of events for which the TOE must be
able to generate audit records. This requirement also defines the
minimum amount of data to be provided for each auditable event.
Additionally, this requirement places a requirement on the level
of audit detail on any additional security functional requirements
an ST author adds to this PP.

FAU_SEL.1 requires the TSF to generate audit records for
selective auditable events based on a set of audit selection

 102

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

attributes. This provides the administrator with the flexibility in
detecting only those events that are deemed necessary by site
policy, thus reducing the amount of resources consumed by the
audit mechanism.

FPT_STM.1 requires the TSF to provide reliable time stamps for
its own use.

O.CHANGE_MANAGE
MENT

The configuration of, and all
changes to, the TOE and its
development evidence will be
analyzed, tracked, and
controlled throughout the TOE’s
development.

ACM_AUT.2

ACM_CAP.5

ACM_SCP.3

ALC_DVS.2

ALC_FLR.3

ALC_LCD.2

ALC_TAT.3

This objective is satisfied by the following Configuration
Management (CM) and Life Cycle (LC) requirements.

ACM_AUT.2 requires the TOE developer to have a CM plan and
use a CM system that provides an automated means to control
changes made to all configuration items that comprise the TOE,
and to support the generation of the TOE. This requirement also
requires the developer to describe in the CM plan the automated
tools used in the CM system and how those tools are used in the
CM system. Thus, ACM_AUT.2 aids in understanding how the
CM system enforces the control over changes made to the TOE.

ACM_CAP.5 requires the developer to describe in the CM plan
how changes to the TOE and its evaluation deliverables are
managed by the CM system. The CM system is required to
operate in accordance with the CM plan and provide the
capability to control who on the development staff can make
changes to the TOE and its developed evidence. Furthermore, the
CM system is required to enforce separation of duties (e.g.,
developers cannot be part of the CM staff), clearly identify the
configuration items that comprise the TSF, and support the audit
of modifications to the TOE.

In addition to the CM plan and CM system, the developer is also
required to provide a list of uniquely identified configuration
items that comprise the TOE, an acceptance plan and integration
procedures. The configuration list is used by the CM system to
control unauthorized modification, addition, or deletion of the
TOE configuration items, and by the integration procedures to
ensure that the TOE is generated correctly. The acceptance plan
describes how modified or newly created configuration items are
reviewed and accepted as part of the TOE. The developer is
required to justify that the acceptance procedures provide for an
adequate and appropriate review of all changes to the TOE. This
requirement satisfies the “analyzed” aspect of this objective.

ACM_SCP.3 is necessary to define what items must be under the
control of the CM system. This requirement ensures that the TOE
implementation representation, design documentation, test
documentation (including the executable test suite), user and
administrator guidance, CM documentation, security flaws, and
development tools (and related information) are tracked by the
CM system.

ALC_DVS.2 requires the developer to describe the security
measures used in the development environment to ensure the
integrity and confidentiality of the TOE. Furthermore, the

 103

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

developer must also provide evidence that that these security
measures are followed by the development team, and justify that
these measures provide the necessary level of protection. The
physical, procedural, and personnel security measures the
developer uses provides an added level of control over who and
how changes are made to the TOE and its associated evidence.

ALC_FLR.3 requires the developer to track and correct flaws in
the TOE that have been discovered either through developer
actions (e.g., developer testing) or by others. In addition to
correcting discovered flaws, the flaw remediation process used
by the developer must also ensure that new flaws are not created
while fixing the discovered flaws. The developer is also
required to support automatic distribution of secure flaw reports
and to timely inform users who might be affected by the
discovered flaws.

ALC_LCD.2 requires the developer to use a standardized life-
cycle model that describes the procedures, tools and techniques
used in the development and maintenance of the TOE.
Procedural aspects such as design methods, code or
documentation reviews, how changes to the TOE are reviewed
and accepted or rejected will add assurance for the TOE at the
time of the initial evaluation and during its maintenance phases.
The developer is required to explain why the particular life cycle
model is chosen and how it is used, and to demonstrate that the
life cycle documentation is compliance with the life cycle model.

ALC_TAT.3 ensures that all the tools and techniques used during
the development and maintenance of the TOE are well defined
including the selected implementation-dependent options of the
development tools. It also requires the developer to establish
implementation standards for all parts of the TOE. This will
mitigate the risk of using ill-defined, inconsistent or incorrect
development tools and techniques.

O.CORRECT_BOOT

The TOE will provide
mechanisms to correctly
transfer the TSF implementation
and TSF data into the TSF’s
execution domain.

AGD_ADM_EXP.1

ADV requirements for
Tools <TBD>

AGD_ADM_EXP.1 requires the developer to provide
administrator guidance for the proper use of the boot mechanism.

<Rationale for ADV requirements for Tools are TBD>

O.CORRECT_CONFIG

The TOE will provide
procedures and mechanisms to
generate the TSF configuration
data such that the TSF
configuration data accurately
reflects the user’s intentions
regarding partitioning and
information flow.

AGD_ADM_EXP.1

ADV requirements for
Tools <TBD>

AGD_ADM_EXP.1 requires the developer to provide
administrator guidance for the correct generation of the
configuration data.

<Rationale for ADV requirements for Tools are TBD>

O.CORRECT_LOAD AGD_ADM_EXP.1 AGD_ADM_EXP.1 requires the developer to provide

 104

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

The TOE will provide
procedures and mechanisms to
correctly convert the TSF code
and/or configuration data into a
TSF-useable form.

ADV requirements for
Tools <TBD>

administrator guidance for the proper use of the load mechanism.

<Rationale for ADV requirements for Tools are TBD>

O.CORRECT_TSF_OPE
RATION

The TOE will provide a
capability to test the TSF to
ensure the correct operation of
the TSF during normal
operation.

FMT_MTD.3

FPT_AMT.1

FPT_TST_EXP.1

FMT_MTD.3 imposes requirements on the management of the
TSF data other than security attributes. This requirement
satisfies this objective by requiring the TSF to only accept values
that fall within the defined range for the TSF data.

FPT_AMT.1 provides the end user the ability to discover any
failures in the hardware security mechanisms that could render
the TSF ineffective in enforcing its security policies. This
requirement requires the TSF to test the hardware security
mechanism during the initial start-up and also periodically during
normal operation.

The standard FPT_TST.1 requirement only mandates the TSF to
verify the integrity of the TSF data and TSF executable code
stored in non-volatile storage. However for high robustness, it is
necessary for the TSF to also verify the integrity of the TSF
executable image loaded in memory. Hence, FPT_TST_EXP.1
was created. These integrity tests are necessary because the TSF
may not correctly enforce its security policies if its data or code
is corrupted.

FPT_TST_EXP.1 also requires the TSF to run a suite of self-tests
to verify the software portions of the TSF. This requirement
explicitly specifies that the TSF self tests be run during the initial
start-up, but leaves the conditions under which the self tests
should occur during normal operation to be filled in by the ST
author. This allows the ST author to tailor the testing
requirements to be appropriate to conditions of the TSF’s normal
operation.

The tests required by FPT_AMT.1 and FPT_TST_EXP.1 verify
the correct operation and integrity of all three parts of the TSF,
i.e., TSF’s underlying abstract machine, TSF’s implementation
and TSF’s data.

O.COVERT_CHANNEL
_ANALYSIS

The TOE will undergo
appropriate covert channel
analysis by NSA to demonstrate
that the TOE meets its
functional requirement.

AVA_CCA_EXP.2 AVA_CCA_EXP.2 requires the developer to perform a
systematic search for inter-partition covert channels and potential
cryptographic key leakage from the cryptographic module. It
also requires the developer to document their analysis and
provide the documentation as evaluation evidence. Since all
subjects assigned to a partition are of the same equivalence class,
a search for intra-partition covert channels is not needed. A
thorough search for cryptographic key leakage is important
because the TSF uses cryptography to protect itself as well as
exported TSF data.

A systematic search, as opposed to an informal search, is
necessary because it is important that the covert channels be
identified in a structured and repeatable way to aid the validation

 105

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

of the covert channel analysis.

AVA_CCA_EXP.2 also requires the NSA evaluator to confirm
the results of the covert channel analysis and to selectively
validate the covert channel analysis through testing. This will
afford additional assurance evidence to support a high robustness
evaluation.

O.CRYPTOGRAPHIC_P
ROTECTION

The TOE will support separation
of the cryptography from the
rest of the TSF.

FPT_SEP.3 FPT_SEP.3 was refined to require the TSF to maintain a separate
security domain for the information flow control, partition flow
control and cryptography SFPs. Since cryptography is used by
the TSF to protect the integrity of TSF data, including TSF flow
policy data, the cryptography SFP should be given the same level
of domain protection afforded to the information and partition
flow control SFPs.

O.CRYPTOGRAPHIC_S
ERVICES

The TOE will use cryptographic
mechanisms to protect the
integrity of TOE code and data
as it resides within the system
and when it is transmitted to
other systems.. The
cryptographic mechanism will
use NIST FIPS validated
cryptography as a baseline with
additional NSA-approved
methods.

FCS_BCM_EXP.1

Baseline cryptographic services are provided in the TOE by FIPS
PUB 140-2 compliant modules implemented in hardware, in
software, or in hardware/software combinations
[FCS_BCM_EXP.1]. The cryptographic services offered by this
baseline capability are augmented to support primarily digital
signature and cryptographic hashing functions.

O.FUNCTIONAL_TESTI
NG

The TOE will undergo
independent security functional
testing that demonstrates the
TSF satisfies the security
functional requirements.

ATE_COV.3

ATE_DPT.2

ATE_FUN.2

ATE_IND.3

ATE_COV.3, ATE_DPT.2 and ATE_FUN.2 impose testing
requirements on the developer to create and document the
security test suite. ATE_IND.3 levies requirements on the
evaluation team to independently verify the testing results. The
combination of these requirements satisfies this objective.

ATE_COV.3 requires the developer to provide an analysis of the
test coverage to demonstrate that the TSF and TSF interfaces are
completely addressed by the developer’s test suite. While this
requirement does not require exhaustive testing of the TSF, it
does impose exhaustive testing of the TSF interfaces to ensure
that the TSF interfaces meet the their security functional
requirements. This component also requires an independent
confirmation of the completeness of the test suite.

ATE_DPT.2 requires the developer to provide an analysis of the
depth of the functional testing to demonstrate that the TSF is
implemented and operates as specified by its high-level design
and low-level design. This component complements
ATE_COV.2 by ensuring that the developer takes into account
the high-level and low-level design when developing their test
suite.

ATE_FUN.2 requires the developer to test the TSF and provide
document the results. The functional tests are required to be

 106

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

loop-free. The developer’s test documentation must include an
analysis of the test procedure ordering dependencies to
demonstrate the testing is not circular. The developer must
provide sufficient test documentation, i.e., test plan, test
procedures, and test results, to support independent verification
of the test results and test coverage analysis.

ATE_IND.3 requires the developer to provide the evaluator with
the TOE and testing materials for independent testing. The
developer must provide the same testing materials that were used
by the developer to perform the developer’s functional testing.
These must include, minimally, test suite executables and source
code, and machine-readable test documentation. ATE_IND.3
also levies testing requirements on the evaluator to verify the
developer’s test results by re-testing all tests performed by the
developer, and to develop and run their own additional tests that
exercise the TOE in areas that are not well demonstrated by the
developer’s test suite. By repeating all of the developer’s tests
and running their own test suite, the evaluator can demonstrate
that the TSF satisfies all security functional requirements as
required by this objective.

O.INSTALL_GUIDANC
E

The TOE will be delivered with
the appropriate installation
guidance to establish and
maintain TOE security.

ADO_DEL_EXP.2

ADO_IGS.1

This objective is satisfied by the documentation requirements of
the trusted delivery and secure installation and start-up functions.

ADO_DEL_EXP.2 was created because none of the existing
ADO_DEL components address the need to use cryptography to
verify the delivery of the TOE code. ADO_DEL_EXP.2 was
based on ADO_DEL.2 which requires the developer to describe
the procedures and technical measures that the developer put in
place to: 1) detect modifications during transit, 2) detect any
discrepancy between the developer’s master version and the
delivered version, and 3) detect any attempts to masquerade as
the developer. ADO_DEL_EXP.2 expanded the scope of
ADO_DEL.2 by requiring the developer and to provide
cryptographic mechanisms to protect the integrity of the TOE
during delivery. ADO_DEL_EXP.2 also requires the developer
to follow the developer-prescribed delivery procedures.

After verifying that the TOE delivery from the developer is the
right version and tamper-free, the user is responsible to configure
and install the TOE in accordance with the TOE’s intended use
before running it. ADO_IGS.1 requires the developer to provide
the guidance on how to use the installation and start-up
procedures to install and start-up an instance of the TOE that was
evaluated.

ADO_IGS.1 further requires the evaluator to verify that if the
procedures are used as described, they will result a secure
installation and start-up of the TOE.

O.INTERNAL_LEAST_
PRIVILEGE

The entire TSF will be

ADV_INT_EXP.3 ADV_INT_EXP.3 was created because the existing ADV_INT.3
component does not address the need to apply the principle of
least privilege (PoLP) to the design and structure of the TSF.

 107

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

structured to achieve the
principle of least privilege
among TSF modules.

ADV_INT_EXP.3 expanded the scope of ADV_INT.3 by
requiring the developer to design and structure the TSF such that
PoLP can be achieved. Together with layering and minimization,
least privilege will afford simplicity to the implementation,
which, in turn, provides a greater level of confidence in the
analysis of the correctness of the implementation.
ADV_INT_EXP.3 also require the evaluator to confirm that the
TSF has been internally structured to achieve least privilege
among TSF modules.

O.MANAGE

The TOE will provide all the
functions necessary to support
the administrative users and
authorized subjects in their
management of the
configuration data, and restrict
these functions from use by
unauthorized subjects.

FMT_MSA_EXP.1

FMT_MTD.3

FMT_MTD_EXP.1

Requiring the TOE to provide adequate functions to manage the
TSF configuration data securely satisfies this objective. Since
the separation kernel does not support the notion of “authorized
roles”, creation of explicit requirements, rather than making
refinements to the existing FMT components, were necessary.
These functional requirements were specifically written to
support both static and dynamic management schemes.

FMT_MSA_EXP.1 was based on FMT_MSA.1. It requires the
configuration data to be the only mechanism through which
subjects are designated as authorized subjects.

FMT__MTD.3 requires the TSF to perform syntax check on all
TSF data. The values that are accepted as valid must fall within
the defined range.

FMT_MTD_EXP.1 was based on FMT_MTD.1. It disallows
modification of the flow policy configuration data.

O.PROTECT

The TOE will provide
mechanisms to protect services
and exported resources.

FDP_RIP_EXP.2

FPT_ITI_EXP.1

FPT_RVM.1

FPT_SEP.3

FDP_RIP_EXP.2 requires the TSF to provide a mechanism to
guard against unauthorized disclosure of residual information of
exported resources. The ST author is responsible to specify the
event that invokes this mechanism, i.e., either upon the allocation
or upon the deallocation of the exported resources.

FPT_ITI_EXP.1 requires the ST author to specify the desired
strength of the modification detection mechanism, and the actions
to be taken if a modification of the TSF data has been detected.

FPT_RVM.1 requires the TSF to enforce the TSP on all services
and exported resources.

The security domain of a subject includes the services and
exported resources that the particular subject is allowed to use.
FPT_SEP.3 requires the TSF to enforce separation between the
security domains of all subjects in the TSC, thus ensuring that
subjects cannot access or manipulate other subject’s services and
resources in violation of the TSP.

O.RATING_MAINTENA
NCE

Procedures to maintain the
TOE’s rating will be
documented.

AMA_AMP_EXP.1 The AMA family of requirements is incorporated into this PP to
ensure the TOE developer has procedures and mechanisms in
place to maintain the evaluated rating that is ultimately awarded
the TOE. These requirements are somewhat related to the ACM
family of requirements in that changes to the TOE and its
evidence must be managed, but the AMA requirements ensure
the appropriate level of analysis is performed on any changes

 108

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

made to the TOE to ensure the changes do not affect the TOE’s
ability to enforce its security policies.

AMA_AMP_EXP.1 requires the developer to develop an
assurance maintenance (AM) plan that describes how the
assurance gained from an evaluation will be maintained, and that
any changes to the TOE will be analyzed to determine the
security impact, if any, of the changes that are made. This
requirement mandates the developer assign personnel to fulfill
the role of a security analyst that is responsible for ensuring the
changes made to the TOE will not adversely impact the TOE and
that it will continue to maintain its evaluation rating.

O.RECOVERY

Procedures and/or mechanisms
will be provided to assure that
recovery, such as from system
failure or discontinuity, is
obtained without a protection
compromise.

FPT_FLS.1

FPT_RCV.2

FPT_RCV.4

FPT_FLS.1 requires the TSF to fail securely, i.e., to preserve a
secure state, when failures are detected by the TSF self-tests.

FPT_RCV.2 requires the TSF to return to a secure state using
automated procedures, i.e., without human intervention, after the
occurrence of an ST-defined failure or service discontinuity
condition. The ST author is required to fill in the list of
failures/service discontinuities to be recovered automatically. If
automated recovery is not possible, the TSF is also required to
enter a maintenance mode that allows the TOE to return to a
secure state. It is assumed that the IT environment provide
adequate protection against unauthorized access to the
maintenance mode.

FPT_RCV.4 requires the TSF to ensure that all security functions
that affect secure state can recover to a consistent and secure state
if a ST-defined failure scenario is encountered during its
execution. The ST author is required to fill in the list of failure
scenarios from which the TSF is expected to recover.

O.REFERENCE_MONIT
OR

The TOE will maintain a domain
for its own execution that
protects itself and its resources
from external interference,
tampering, or unauthorized
disclosure.

FPT_RCV.2

FPT_SEP.3

The requirements that implement this objective fall into two
categories. The first category requires the TSF to create and
maintain separate security domains for its execution. The second
category requires the TSF to continue to protect itself even after
unexpected interruptions, i.e., to be able to recover to a consistent
and secure state.

FPT_SEP.3 belongs to the first category. It requires the TSF to
maintain three different types of security domains during
runtime: 1) a separate domain for information flow control,
partition flow control and cryptography SFP enforcement
functions, 2) a separate domain for the remainder of the TSF that
does not enforce the flow control and cryptography SFPs, and 3)
separate domains for the non-TSF portions of the TOE, i.e., the
subjects in the TSC. The SFP enforcement functions are the most
important functions provided by the TSF, thus it is necessary to
separate them from the less-critical portion of the TSF. The
separation between the TSF and the non-TSF portion of the TOE
is also necessary so that the non-TSF portion cannot interfere
with the operation of the TSF.

FPT_RCV.2 belongs to the second category. It requires the TSF

 109

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

to enter a maintenance mode that allows the TOE to return to a
secure state if automated recovery is not possible. This ensures
that the TSF cannot be bypassed even in the event of non-
recoverable failures.

O.RESIDUAL_INFORM
ATION

The TOE will ensure that any
data contained in a protected
resource is not released when
the resource is reallocated.

FDP_RIP_EXP.2 FDP_RIP_EXP.2 satisfies this objective by requiring that when
an exported resource is reallocated, the TSF must ensure that no
residual information from the previous allocation is made
available via that particular exported resource. Removal of
residual information must occur at the point of deallocation or
allocation. The ST author needs to make the selection based on
the intended use of the TOE.

O.RESOURCE_SHARIN
G

The TOE shall provide
mechanisms that mitigate
attempts to exhaust TOE
resources (e.g., system
memory, persistent storage, and
processing time).

FRU_RSA_EXP.1 Requiring the TSF to statically allocate exported resources to
partitions as defined by the configuration data satisfies this
objective. For separation kernels, the applicable exported
resources include system memory and processing time.
FRU_RSA_EXP.1 was created because the existing FRU_RSA.1
mandates the allocation limits be based on users and subjects, not
partitions. Two iterations of this requirement were used to
specify the different allocation rules for system memory and
processing time. Allocation limits on system memory are based
on the simultaneous memory usage by the partitions at any given
time. Allocation limits on processing time are based on the CPU
usage by the partitions over a specific time interval. Limits
regarding the exhaustion of other exported resources is left to the
ST author.

O.SECURE_STATE

The TOE will provide
mechanisms to transition the
TSF to a secure state during
start-up, re-activation of the
current flow policy configuration
data and activation of a new
flow policy configuration data.

ADV_INI_EXP.1 Abstractly, the TOE consists of two distinct sets of functions:
initialization and runtime. Initialization functions are outside the
scope of the TSF because they set up the TSF. Initialization
functions only execute during start-up and are not relied upon for
security enforcement after the TOE is fully initialized. Runtime
functions, on the other hand, are relied upon, either directly or
indirectly, to correctly enforce the TSP once the TSF reaches a
secure state.

ADV_INI_EXP.1 requires the TOE’s developer to provide an
initialization mechanism that brings the TSF to a secure state
after the TSF code and data are transferred into memory. The
combination of the boot and initialization functions satisfies this
objective. ADV_INI_EXP.1 also requires the developer to
provide an initialization mechanism to provide restrictive defaults
for all security attributes that are not explicitly set by the
administrator.

<Need to revisit the above rationale after ADV_INI is finalized>

O.SOUND_DESIGN

The TOE will be designed using
sound design principles and
techniques. The TOE design,
design principles and design
techniques will be adequately

ADV_ARC_EXP.1

ADV_FSP.4

ADV_HLD_EXP.4

ADV_INT_EXP.3

This objective is achieved by imposing developmental
requirements on the design of the TSF and non-TSF components
of the TOE, and on the analysis of the security functions for
which strength of function claims are made. For this PP, strength
of function claims are made only on cryptographic functions.

 110

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

and accurately documented. ADV_LLD_EXP.2

ADV_RCR.3

ADV_SPM.3

AVA_SOF.1

Rationales for ADV requirements are described in Appendix E.

<Rationale for AVA_SOF depends on crypto support>

O.SOUND_IMPLEMEN
TATION

The implementation of the TOE
will be an accurate instantiation
of its design.

ADV_IMP.3

ADV_INT_EXP.3

ADV_LLD_EXP.2

ADV_RCR.3

ALC_DVS.2

ALC_FLR.3

ATE_COV.3

ATE_DPT.2

ATE_FUN.2

ATE_IND.3

AVA_CCA_EXP.2

AVA_VLA.4

This objective is achieved by imposing developmental
requirements on the implementation of the TSF and non-TSF
components of the TOE to ensure that the TOE implementation is
correctly created as specified by the TOE design.

Rationales for ADV requirements are described in Appendix E.

ALC_DVS.2 requires the developer to describe all security
measures they employ to ensure the integrity and confidentiality
of the TOE are maintained. In addition to showing the evidence
that these security measures are followed during the development
and maintenance of the TOE, the developer is also required to
justify that these security measures provide the necessary level of
protection. Although confidentiality may not be an issue for
some TOE implementation, the physical, procedural, and
personnel security measures the developer uses provides an
added level of assurance that the integrity of the TOE
implementation is appropriately maintained.

ALC_FLR.3 supports this objective by requiring the developer to
track and correct flaws in the TOE, and to provide safeguards
that new flaws are not created while fixing the discovered flaws.

ATE_COV.3, ATE_DPT.2 and ATE_FUN.2 require the
developer to test the TSF and analyze the test coverage as well as
the depth of testing. These requirements provides the assurance
that the TOE security functional requirements are correctly
implemented and that the TOE implementation is a correct
instantiation of both high-level design and low-level design.

ATE_IND.3 provides added assurance on the rigor of the testing
by requiring the evaluator to develop and run their own test suite
in addition to re-testing all tests performed by the developer. The
correctness of the TOE implementation can be demonstrated by a
successful execution of these tests by the evaluator.

Requiring the TOE to be assessed for the existence of exploitable
covert channels and vulnerabilities also satisfies this objective.

AVA_CCA_EXP.2 requires the developer to perform a
systematic search for inter-partition covert channels and potential
cryptographic key leakage from the cryptographic module. The
NSA evaluator is required to confirm the results of the covert
channel analysis and to selectively validate the analysis through
testing. See O.COVERT_CHANNEL_ANALYSIS for the
rationale on why inter-partition covert channels and thorough
search for cryptographic key leakage is important.

AVA_VLA.4 component to provide the necessary level of

 111

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

confidence that vulnerabilities do not exist in the TOE that could
cause the security policies to be violated. AVA_VLA.4 requires
the developer to perform a systematic search for potential
vulnerabilities in all the TOE deliverables, and to provide a
justification that the analysis completely addresses the TOE
deliverables. AVA_VLA.4 was refined to require that, in
addition to the independent penetration testing and analysis
performed by the evaluator, a second set of penetration testing
and analysis be independently performed by the NSA evaluator.
The two levels of independent testing and analysis helps to
ensure that the TOE is resistant to penetration attacks performed
by an attacker possessing a high attack potential.

O.TRUSTED_DELIVER
Y

The integrity of the code of the
TOE must be protected during
the initial distribution and
subsequent updates, and
verified to ensure that the on-
site version matches the master
distribution version.

ADO_DEL_EXP.2 ADO_DEL_EXP.2 requires the developer to provide
cryptographic signature services and cryptographic hashing
functions to protect the integrity of the TOE when distributing
versions of the TOE to a user’s site. ADO_DEL_EXP.2 also
requires the developer to use independent channels to deliver the
TOE code and to deliver the cryptographic keying materials used
to verify the distribution of the code.

Cryptographic integrity check mechanisms increase assurance,
i.e., only people possessing the correct cryptographic key will be
able to view the cleartext checksum of the code.

O.TSF_INTEGRITY

The TOE will be able to verify
the integrity of the TSF code
and data.

FPT_TST_EXP.1 FPT_TST_EXP.1 requires the TSF to either verify, or provide the
capability for an authorized subject to verify, the integrity of TSF
configuration data and TSF executable code loaded in memory.
If the TSF software or TSF configuration data is corrupted, the
TSF may not correctly enforce its security policies. Besides the
TSF configuration data, the ST author is required to specify the
testing of other TSF data that the TSF depends on to enforce its
security policies.

O.USER_GUIDANCE

The TOE will provide users with
the necessary information for
secure use of the TOE.

AGD_USR.1 AGD_USR.1 satisfies this objective by requiring the developer to
document the functions, interfaces and warnings available to non-
administrative users of the TOE. AGD_USR.1 further requires
the developer to describe all user responsibilities and
assumptions necessary for secure use of the TOE.

O.VULNERABILITY_A
NALYSIS_TEST

The TOE will undergo
independent vulnerability
analysis and penetration testing
by NSA to demonstrate the
design and implementation of
the TOE does not allow
attackers with high attack
potential to violate the TOE’s
security policies.

AVA_CCA_EXP.2

AVA_MSU.3

AVA_SOF.1

AVA_VLA.4

AVA_CCA_EXP.2 requires both the developer and evaluator to
perform a systematic search for inter-partition covert channels
and cryptographic key leakage. . See
O.COVERT_CHANNEL_ANALYSIS for the rationale on why it
is important to perform a thorough search for these covert
channels.

AVA_MSU.3 satisfies this objective by requiring the developer
to provide complete, clear, consistent and reasonable
administrator and user guidance documents, and to perform an
analysis for any vulnerability that might be caused by unclear
documentation. AVA_MSU.3 further requires the evaluator to
perform independent testing to check if the provided guidance
document would enable an administrator or user, with proper

 112

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements
Meeting Objectives

Rationale

training, to determine if the TOE is configured correctly or
incorrectly.

<Rationale for AVA_SOF depends on crypto support>

AVA_VLA.4 satisfies this objective by requiring the developer
1) to perform a systematic search for vulnerabilities, 2) to
document the disposition of the identified vulnerabilities, 3) and
to show evidence that the identified vulnerabilities cannot be
exploited in the intended environment for the TOE and that the
TOE is resistant to obvious penetration attacks. AVA_VLA.4
also requires two levels of independent testing and analysis to
help to ensure that the TOE is resistant to penetration attacks
performed by an attacker possessing a high attack potential.

7.5 IT Environment Requirements Rationale
109 Each of the environment security objectives identified in section 4 are addressed by one or more

security requirements. Table 7.5 below provides the mapping from security requirements to
security objectives, as well as a rationale that discusses how the security objective is met.
Definitions are provided (in italics) below each security objective so the PP reader can reference
these without having to go back to section 4.

Table 7.5 – Mapping of Security Requirements for IT Environment to Objectives

Objectives from
Policies/Threats

Requirements Meeting
Objectives

Rationale

OE.CHANNELS

If the residual risk from covert
channels is a concern, the
applications executing on the TOE
must be trusted with assurance
commensurate with the value of the
IT assets protected by the TOE.

N/A IT environment requirements that address this objective
are outside the scope of this PP. Covert channels allowed
to exist on a system are a threat to the assets protected by
the system. Assurance must be provided that Trojan
horses and other application malware cannot attack IT
assets via the covert channels.

OE_PHYSICAL

Physical security will be provided for
the TOE by the IT environment
commensurate with the value of the
IT assets protected by the TOE.

N/A IT environment requirements that address this objective
are outside the scope of this PP. Computer systems built to
conform with this PP may be vulnerable to physical attack
such that they are unable to protected their IT assets.

 113

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives from
Policies/Threats

Requirements Meeting
Objectives

Rationale

OE.TRUSTED_FLOWS

If a subject is allowed by the
configuration data to cause
information flow in violation of the
partial ordering of information flows
between partitions, that subject must
be trusted with assurance
commensurate with the value of the
IT assets in all partitions to which it
has access.

N/A IT environment requirements that address this objective
are outside the scope of this PP. See rationale for
A.TRUSTED_FLOWS.

OE.TRUSTED_INDIVIDUA
L

If an individual is allowed to perform
procedures upon which the security
of the TOE may depend, that
individual must be trusted with
assurance commensurate with the
value of the IT assets.

N/A IT environment requirements that address this objective
are outside the scope of this PP. See rationale for
A.TRUSTED_INDIVIDUAL.

7.6 Explicit Requirements Rationale

110 Explicit components have been included in this protection profile because the Common Criteria
requirements were found to be insufficient as stated. This section includes the rationale for using
explicit requirements for both the TOE and the IT environment.

7.6.1 Explicit TOE Functional Requirements
Table 7.6 – Rationale for Explicit TOE Functional Requirements

Explicit Component Rationale
FCS_BCM_EXP.1 The CC does not provide a means of specifying a cryptographic module

baseline for implementations developed in hardware, in software, or in
hardware/software combinations. FCS_BCM_EXP.1 provides for the
specification of the required FIPS certification based on the
implementation baseline.

FDP_RIP_EXP.2 FDP_RIP.2 is defined in terms of resource and objects in the CC. Since
this PP does not support the “object” abstraction, FDP_RIP_EXP.2 was
introduced.

FMT_MSA_EXP.1 As there is no user interface, “authorized subjects” is used in place of an
“authorized role.” Sentence structure was simplified for clarity.

FPT_ITI_EXP.1 The words “during transmission” were changed to “whenever the TSF data
is transmitted” to indicate that such transmission is not required.

 114

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Explicit Component Rationale
FPT_TST_EXP.1

”TSF” was changed to “TSF’s implementation” to indicate that this
requirement applies to the software and not the hardware.

As there is no user interface, “authorized subjects” is used in place of
“authorized users.” Also modified to allow that the TSF itself may
perform this verification.

Added to account for the verification of the integrity of the currently
running TSF (viz., its executing image)

FRU_RSA_EXP.1(1)
FRU_RSA_EXP.1(2)

Requirements (1) and (2) were split to allow clarity of presentation, since
they involve different metrics (i.e., “simultaneously” vs. “period of time”).
As there is no user interface, “partitions” was substituted for the various
user expressions.

7.6.2 Explicit TOE Assurance Requirements
Table 7.7 – Rationale for Explicit TOE Assurance Requirements

Explicit Component Rationale
ADO_DEL_EXP.2 Requirements .3D, and .4C through .7C were added to require the

developer to provide documentation for trusted delivery. The requirement
of independent channels for delivery of TOE and keying materials
provides additional assurance against tampering. Requirement .2E was
added to require the evaluator to determine that if the procedures are used
as prescribed, trusted delivery can be achieved.

AGD_ADM_EXP.1 Requirements .9C and .10C were added to require that the developer
provide guidance on how to use the configuration data generation tool to
create configuration data that accurately reflects the user’s intention.

FDP_IFF and FDP_IFC require that access to resources be controlled by
the TSF at the granularity to which those resources are made available
(viz., exported) to subjects. Thus, the TSF provides the ability to enforce
least privilege. Requirements .11C and .12C were added to ensure that the
developer provide guidance for creating TSF configuration that conforms
to the principle of least privilege, and that the configuration data, in fact,
enforces least privilege.

Requirements .13C through .16C were added to require the developer to
document how to generate the configuration data, to convert the TSF code
and/or configuration data into a TSF-useable form and to bring the TSF to
the initial secure state.

Requirements .2E and .3E were added to require the evaluator to
determine that the administrator guidance satisfies requirements .9C
through .16C.

AMA_AMP_EXP.1 Requirement .1.1C was added to make explicit the requirement to identify
the assurance baseline.

 115

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Explicit Component Rationale
AVA_CCA_EXP.2 Requirement .2.1D was refined to only address covert channels between

partitions. Requirement .2.2D was added to ensure that a thorough search
for potential cryptographic key leakage is performed by the developer.
Requirements .2.1E through .2.3E were refined to explicitly require the
NSA evaluator to confirm the results of the covert channel analysis and to
selectively validate through testing the covert channel analysis.

ADV requirements for TSF See Appendix E.

ADV requirements for Tools <TBD>

7.7 Rationale for Strength of Function
111 TBD

7.8 Rationale for Assurance Rating
112 This protection profile has been developed for a U.S. Government high robustness environment.

The TOE environment and the value of information processed by this environment (i.e., highly
sensitive) establish the need for the TOE to be evaluated at an Evaluated Assurance Level 6
Augmented (EAL6+)9.

9 Refer to the “Mutual Recognition of Common Criteria Certificates” section 1.3 to read conditions for the CC
certificate to be mutually recognized for PPs with EALs higher than 4.

 116

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

8. References
[1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction

and General Model, CCIMB-99-031, Version 2.1, August 1999.

[2] Common Criteria for Information Technology Security Evaluation, Part 2I: Security
Functional Requirements, CCIMB-99-032, Version 2.1, August 1999.

[3] Common Criteria for Information Technology Security Evaluation, Part 3: Security
Assurance Requirements, CCIMB-99-033, Version 2.1, August 1999.

[4] Common Methodology for Information Technology Security Evaluation, Part 2:
Evaluation Methodology, CEM-99/045, Version 1.0, August 1999.

[5] National Computer Security Center, Department of Defense Trusted Computer System
Evaluation Criteria DoD 5200.28-STD, December 1985.

[6] National Security Telecommunications and Information Systems Security Committee,
National Information Systems Security (INFOSEC) Glossary, NSTISSI No. 4009,
September 2000.

 117

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix A - Acronyms

ANSI American National Standards Institute

CC Common Criteria for Information Technology Security Evaluation Version 2.1

COTS Commercial-Off-The-Shelf

DoD Department of Defense

EAL Evaluation Assurance Level

FIPS Federal Information Processing Standard

IA Information Assurance

IT Information Technology

NIST National Institute of Standards and Technology

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

PP Protection Profile

RNG Random Number Generator

SF Security Function

SFP Security Function Policy

SFR Security Function Requirement

SOF Strength of Function

ST Security Target

TOE Target of Evaluation

TOM Target of Maintenance

TSC TSF Scope of Control

TSF TOE Security Functions

TSFI TSF Interface

TSP TOE Security Policy

 118

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix B - Cryptographic Standards,
Policies, and Other Publications

Standards

ANSI X9.31-1998 American National Standards Institute (ANSI) X9.31-1998 (May 1998), Digital
Signatures Using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA), [http://webstore.ansi.org/ansidocstore].

ANSI X9.62-1998 American National Standards Institute (ANSI) X9.62-1-1998 (10 Oct 1999), Public
Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital
Signature Algorithm (ECDSA), (http://webstore.ansi.org/ansidocstore).

FIPS PUB 140-2 National Institute of Standards and Technology, Security Requirements for
Cryptographic Modules, Federal Information Processing Standard Publication
(FIPS-PUB) 140-2, dated May 25, 2001, [http://cs-
www.ncsl.nist.gov/publications/fips/fips140-2/fips1402.pdf].

FIPS PUB 171 National Institute of Standards and Technology, Key Management Using ANSI
X9.17, Federal Information Processing Standard Publication (FIPS-PUB) 171,
dated April 1992 [http://cs-
www.ncsl.nist.gov/publicatins/fips/fips171/fips171.txt].

FIPS PUB 180-2 National Institute of Standards and Technology, Secure Hash Standard, Federal
Information Processing Standard Publication (FIPS-PUB) 180-2, dated 1 August
2002, [http://cs-www.ncsl.nist.gov/publications/fips/fips180-2/fips180-2.pdf].

 119

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix C – Rationale for IFC/IFF
Requirements

113 The requirements for IFC and IFF need to include both a partition level policy and a
subject/resource level policy for several reasons:

1. This PP should be specific to separation kernels. This is not intended to be a generic security
kernel PP. Stating IFC and IFF as generic access control mechanisms would allow any
security kernel to be evaluated under this PP.

2. Covert channel requirements should apply at the partition level, but not within partitions. If
IFC/IFF were written without concern for partitions, then it would be inconsistent to state
covert channel requirements at the partition level.

3. Requirements for Principle of Least Privilege appropriate for high assurance systems should
apply at both the partition level and at more granular levels. For example, suppose there is
one subject per partition, and the partition includes several exported resources. In this case,
the subject should have only (viz., the least) modes of access to each of those resources that it
requires, as opposed to a blanket (e.g., maximal) access to all of the resources in the partition.
This restriction may be difficult to express or understand if IFC/IFF does not articulate
requirements at the partition as well as the resource level.

114 With respect to this PP, the TSF creates the subject and partition abstractions from the internal
resources available on a single processor, and exports at its interface certain resources to
subjects. It provides separation between subjects and partitions by controlling which of those
exported resources each subject may access. Even if there is only one subject in a partition
(there is a program there, regardless of whether or not the implementation uses the word subject,
or partition for that matter), the TSF must still ensure that the resources that the subject can
access (viz., via its address space) are only those resources that the TSF has exported to it: it is
the premise of separation that the TSF must always know what resources to allow or deny to any
subject. It would be circular to say that, since separation is provided, the TSF need not provide
access control to selected resources exported to subjects.

115 A high assurance TSF must be able to apply least privilege to those resources it exports (as well
as being structured to enforce least privilege internally). A subject’s address space is defined by
a set of exported resources and the access modes granted to that subject for those resources.
Least privilege regarding exported resources should not be difficult for any implementation of a
separation kernel, since the configuration data will always identify the composition of each
subject’s address space, which does not change dynamically during runtime. Least privilege is
an important notion and should be implemented in any secure system, although in the “minimal
configurations,” (see Section 2.1) the requirement for least privilege may be met implicitly.

116 Regarding nomenclature, “partition” and “subject” should be viewed as orthogonal abstractions.
“Partition,” as discerned from its mathematical genesis, provides for a set-theoretic grouping of
system entities, whereas “subject” allows us to reason about the individual active entities of a
system. In this view, it is not consistent to say that a partition (a collection, containing at least

 120

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

one element) is a subject (an active element). Furthermore, if a partition were a subject, and
there were also resources associated with the partition, then we would be back to where we
started, with a set of subjects and resources associated with a partition. If there are no resources
associated with the degenerative partition/subject, then all exported resources would be outside
of that partition, and the subject would not have any address space. In this case, how could a
subject run without any stack or code?

117 It is not required that the implementation must perform an explicit assignment of subject or
resource to partition; for example, it is allowed for the partition to contain only one subject and
for the subject ID and the partition ID to be the same; note that this is not the same as saying that
the partition is a subject.

 121

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix D – TSF Data Description
118 There are various types of TSF Data, for example: internal data structures, configuration data,

and TSF-generated data. Configuration data includes flow policy and non-flow policy data.
Some or all configuration data may be imported from the IT environment during system
initialization. The TSF generates some data, such as audit records and digital signatures. The
TSF may export certain TSF Data, including generated data, configuration data, and other
implementation-dependent TSF Data.

119 Examples of TSF data are, Internal TSF Structures, Configuration Data and TSF-Generated
Data:

A. Internal TSF Structures

1. Hardware registers

2. Software data structures

B. Configuration Data

1. Flow Policy Configuration Data

a. Information Flow Configuration Data

b. Partition Flow Configuration Data

2. Non-Flow Policy Configuration Data

c. Audit Configuration Parameters

d. General Configuration Parameters

i. Clock Settings

ii. Self-Test Periods

B. TSF-Generated Data

1. Subject and resource policy-enforcement attributes

2. Audit Output (e.g., audit records)

3. Clock Output

 122

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix E – Explanatory Material for
Explicit Class ADV Requirements

E.1 Rationale for Class ADV: Development

Class ADV: Development

Editor Note: Document version 0.1; 15 January 2004.

Editor Note: I suggest when reading this for the first time, you start with the families that
already existed, then ARC because, although it is new, it ties in with them. CMP
and IFA address information related to the composition issue; we discovered a
need for them in HLD, but they really are distinct from the others.

Editor Note: This is the proposed leveling of ADV requirements using the new components.

Assurance Components by

Evaluation Assurance Level Assurance
Class

Assurance
Family

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7
ADV_ARC 1 1 1 1
ADV_CMP 1 2 2 2 2 2
ADV_FSP 1 2 3 3 4 5 6
ADV_HLD 1 2 2 3 4 4
ADV_IFA
ADV_IMP 1 1 2 3
ADV_INT 2 3 4
ADV_LLD 1 2 3 4
ADV_RCR 1 1 2 2 2 3

Development

ADV_SPM 1 3 3 3

120 The development class encompasses five families of requirements for representing the TSF at

 123

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

various levels of abstraction from the functional interface to the implementation representation.
These families include the description of mechanism-oriented Security Functional Requirements
(SFRs) as well as those that are architecture-oriented (specifically, FPT_SEP and FPT_RVM).
The development class also includes a family of requirements for a correspondence mapping
between the various TSF representations to aid in the determination that the levels of
decomposition are mutually supportive. There are two families included to support the activities
required in order to integrate (“compose”) evaluated TOEs that include those families in a way
that facilitates the determination of the trustworthiness of the integrated system. In addition,
there is a family of requirements for a TSP model, and for correspondence mappings between the
TSP, the TSP model, and the functional specification. Finally, there is a family of requirements
on the internal structure of the TSF, which covers aspects such as modularity, layering,
minimisation of complexity, and principle of least privilege.

121 Figure E-1 shows the families within this class, and the hierarchy of components within the
families.

Class ADV: Development

ADV_CMP Composition Information

ADV_FSP Functional Specification

ADV_HLD High-Level Design

ADV_IFA Information Availability

ADV_IMP Implementation Representation

ADV_INT TSF Internals

ADV_LLD Low-Level Design

ADV_RCR Representation Correspondence

ADV_ARC Architectural Design

ADV_SPM Security Policy Modeling

3 4

1 2

1 2

1 2

1

1 2

1 2

1 2

1 2

1 2

1

5 6

3 4

3

3 4

3 4

3

3

Figure E-1 Development Class Decomposition

 124

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

122 The paradigm evident for these families is one of a functional specification of the TSF in terms
of its interfaces (describing what the TSF does), decomposing the TSF into subsystems
(describing how the TSF accomplishes its functions at a higher level), decomposing the
subsystems into modules (describing how the TSF accomplishes its functions at an algorithmic
level, and providing a guide for the review of the implementation representation), and showing
the implementation of the modules. All levels of decomposition are used in determining the
completeness and accuracy of all other levels, ensuring that the levels are mutually supportive.
The requirements for the various TSF representations are separated into different families, to
allow the PP/ST author to specify which subset of the TSF representations are required. The
level chosen will dictate the assurance desired/gained.

Environment

Security
Objectives

Functional
Requirements/TSP

Functional
Specification

Low-level Design

High-level Design

Implementation
Representation

TSP Model

ADV_IMP

ADV_LLD

ADV_HLD

ADV_RCR

ADV_RCR

ADV_RCR

ADV_FSP

APE/ASE_OBJ

APE/ASE_REQ

ASE_TSS

ADV_SPM

ADV_SPM

Source corresponds
to target.

Source is refined in
target.

Mutually Supportive
Analysis performed
over all levels of
decomposition

TOE Summary
Specification

ADV_RCR

Figure E-2 Relationships between TOE Representations and Requirements

Editor Note: We will need to modify (eventually) this figure and the references to it, once
families are agreed. Currently para 304 indicates INT, ARC, and IFA are not
pictured, but may want to change this if we can figure a way to represent them
here. (ADV_ARC contains FSP- and HLD-type information for the FPT_SEP
and FPT_RVM functional requirements. ADV_CMP contains FSP-type

 125

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

information for calls out from the TSF. ADV_IFA contains information to
support ADV_CMP by use of third parties.)

123 Figure E-2 indicates the relationships between the various TSF representations and the objectives
and requirements that they are intended to address. As the figure indicates, the APE and ASE
classes define the requirements for the correspondence between the functional requirements and
the security objectives as well as between the security objectives and the TOE’s anticipated
environment. Class ASE also defines requirements for the correspondence between both the
security objectives and functional requirements and the TOE summary specification.

124 The requirements for all other correspondence shown in Figure E-2 are defined in the ADV
class. The ADV_SPM family defines the requirements for correspondence between the TSP and
the TSP model, and between the TSP model and the functional specification. The ADV_RCR
family defines the requirements for mappings from higher-level representations to “adjacent”
lower-level representations (e.g., functional specification to high-level design) to facilitate the
analysis of completeness and accuracy at each level of decomposition.

125 Finally, each assurance family specific to a TSF representation (i.e., ADV_FSP, ADV_ARC,
ADV_HLD, ADV_LLD and ADV_IMP) defines requirements relating that TSF representation
to the functional requirements, the combination of which helps to ensure that the TOE security
functional requirements have been addressed. All decompositions must completely and
accurately reflect all other decompositions (i.e., be mutually supportive). Assurance relating to
this factor is obtained by analysis of each of the levels of decomposition and comparison of the
details with other levels of decomposition (in a recursive fashion) while the analysis of a
particular level of decomposition is being performed.

126 ADV_CMP requires that calls out of the TSF (that is, functionality the TSF depends on in order
to perform its functions) be documented and traced to the TSFI that, when invoked, will in turn
cause the call out of the TSF to occur. While the activities during product evaluation can only
determine accuracy and completeness of such documentation (and not their security effect), the
information is made available (along with that in the ADV_IFA family) to allow products to be
integrated and analyzed from a security perspective.

127 The ADV_INT family is not represented in this figure, as it is related to the internal structure of
the TSF, and is only indirectly related to the process of refinement of the TSF representations.
Similarly, the ADV_ARC family is not represented in the figure because it relates to the
architectural soundness, rather than representation, of the TSF. Finally, ADV_IFA families is not
included as it relates to the provision of information to be used in analysis or activities outside of
the scope of the Common Criteria evaluation paradigm.

Application note

128 The TOE security policy (TSP) is the set of rules that regulate how resources are managed,
protected and distributed within a TOE, expressed by the TOE security functional requirements.
The developer is not explicitly required to provide a TSP, as the TSP is expressed by the TOE
security functional requirements, through a combination of security function policies (SFPs) and
the other individual requirement elements.

 126

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

129 The TOE security functions (TSF) are all the parts of the TOE that have to be relied upon for
enforcement of the TSP. The TSF includes both functions that directly enforce the TSP, and also
those functions that, while not directly enforcing the TSP, contribute to the enforcement of the
TSP in a more indirect manner.

130 Several important concepts were used in the development of the components of the ADV
families. These concepts, while introduced briefly here, are explained more fully in the
application notes for the families.

131 One over-riding notion is that, as more information becomes available, greater assurance can be
obtained that that the security functions are 1) correctly implemented; 2) cannot be
compromised; and 3) cannot be bypassed. This is done through the verification that the
documentation is correct and consistent with other documentation, and by providing information
that can be used to ensure that the testing activities (both functional and penetration testing) are
comprehensive. This is reflected in the leveling of the components of the families. In general,
components are leveled based on the amount of information that is to be provided (and
subsequently analyzed).

132 While not true for all TOEs, it is generally the case that the TSF (which enforces the TSP,
meaning the portions of the system that implements the SFRs) is sufficiently complex that there
are portions of the TSF that deserve more intense examination than other portions of the TSF.
Determining those portions is unfortunately somewhat subjective, thus terminology and
components have been defined such that as the level of assurance increases, the responsibility for
determining what portions of the TSF need to be examined in detail shifts from the developer of
the TOE to the evaluator of the TOE. To aid in expressing this concept, the following
terminology is introduced.

133 All portions of the TSF are security relevant, meaning that they must preserve the security of the
system as expressed by the SFRs. If a part of the TSF plays a role in implementing any SFR on
the system (with the exception of FPT_SEP and FPT_RVM, as detailed in the next paragraph),
then that interface is termed security enforcing. Such requirements are not limited to the access
control requirements, but refer to any functionality provided by one of the SFRs contained in the
ST (with exceptions for FPT_SEP and FPT_RVM). It should be noted that the definition of
“plays a role in” is impossible to express quantitatively, thus leading to the distinction of what is
security enforcing and what is merely security supporting. Security-supporting functionality is
trusted to preserve the security, both by operating correctly and not being subject to corruption.
The distinction between security-supporting and security-enforcing functionality is defined
through the requirements in the components and the associated methodology for the components
in the ADV families dealing with TOE representation.

134 FPT_SEP and FPT_RVM are SFRs that require a different type of analysis from other SFRs.
These requirements are architecturally related, and their implementation (or lack thereof) is not
easily (or efficiently) testable at the TSFI. From a terminology standpoint, although
implementation (and the associated analysis) of FPT_SEP and FPT_RVM is critical to the
trustworthiness of the system, portions of the TSF whose sole security relevance is applicable to
meeting the FPT_SEP and FPT_RVM requirements will be termed security supporting.

135 It is important to point out that in terms of the assurance to be provided, the analysis for security
supporting functionality (for instance, properties of a system that support FPT_SEP and

 127

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

FPT_RVM) is no less important than that for security enforcing functionality. There is a
difference in analysis of these two types of functionality, however, in that the security-enforcing
functionality is more or less directly visible and relatively easy to test, while security-supporting
functionality requires varying degrees of analysis on a much broader set of functionality. Further,
the depth of analysis for security-supporting functionality will vary depending on the design of
the system. The ADV families are constructed to address this by have a separate family
(ADV_ARC) devoted to analysis of the FPT_SEP and FPT_RVM requirements, while the other
families are concerned with analysis of SFRs other than FPT_SEP and FPT_RVM.

136 Even in cases where different descriptions are necessary for the multiple levels of abstraction, it
is not absolutely necessary for each and every TSF representation (with the exception of the
implementation representation) to be in a separate document. Indeed, it may be the case that a
single document meets the documentation requirements for more than one TSF representation,
since it is the information about each of these TSF representations that is required, rather than the
resulting document structure. In cases where multiple TSF representations are combined within a
single document, the developer should indicate which portions of the documents meet which
requirements. The exception is that the implementation representation has to be independent
from the low-level design document in order to provide a clear and un-ambiguous low-level
design for the TSF.

137 Three types of specification style are mandated by this class: informal, semiformal and formal.
The functional specification, high-level design, low-level design and TSP models will be written
using one or more of these specification styles. Ambiguity in these specifications is reduced by
using an increased level of formality; however, formal specification of certain decompositions is
currently beyond the state of the art and is not included.

138 An informal specification is written as prose in natural language. Natural language is used here
as meaning communication in any commonly spoken tongue (e.g. Dutch, English, French,
German). An informal specification is not subject to any notational or special restrictions other
than those required as ordinary conventions for that language (e.g. grammar and syntax). While
no notational restrictions apply, the informal specification is also required to provide defined
meanings for terms that are used in a context other than that accepted by normal usage.

139 The difference between semiformal and informal documents is only a matter of
formatting/presentation: a semiformal model includes such things as an explicit glossary of
terms, a standardized presentation format, etc. A semiformal specification is written in a
restricted syntax language and is typically accompanied by supporting explanatory (informal)
prose. The restricted syntax language may be a natural language with restricted sentence
structure and keywords with special meanings, or it may be diagrammatic (e.g. data-flow
diagrams, state transition diagrams, entity-relationship diagrams, data structure diagrams, and
process or program structure diagrams). Whether based on diagrams or natural language, a set of
conventions must be supplied to define the restrictions placed on the syntax. Inclusion in the
glossary explicitly identifies the words that are being used in a precise and constant manner;
similarly, the standardised format implies that extreme care has been taken in methodically
preparing the document in a manner that maximizes clarity.

140 A formal specification is written in a notation based upon well-established mathematical
concepts, and is typically accompanied by supporting explanatory (informal) prose. These

 128

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

mathematical concepts are used to define the syntax and semantics of the notation and the proof
rules that support logical reasoning. The syntactic and semantic rules supporting a formal
notation should define how to recognise constructs unambiguously and determine their meaning.
There needs to be evidence that it is impossible to derive contradictions, and all rules supporting
the notation need to be defined or referenced.

E.2 Rationale for ADV_ARC_EXP

Architectural Design (ADV_ARC)

Editor Note: This version of ADV acknowledges the inherent difference in nature between
the pseudo-architectural requirements (FPT_SEP and FPT_RVM) and the
purely functional requirements (the others in Part 2). This difference is
reflected by treating the two separately within the FSP, HLD, and LLD families.
Consequently, if ADV_ARC is not included when FPT_SEP and FPT_RVM
are included (in either the PP or ST) then they will not be analyzed in doing the
ADV_FSP, HLD, and LLD work units, and this would not be a good thing.
Therefore, there should be a dependency in Part 2 for FPT_SEP and
FPT_RVM on this component.

Objectives

141 The architectural design of the TOE is related to the information contained in other
decomposition documentation (functional specification, high-level design, low-level design)
provided for the TSF, but presents the design in a manner that supports the argument that the
TSP cannot be compromised (FPT_SEP) and that it cannot be bypassed (FPT_RVM). The
objective of this component is for the developer to provide an architectural design and
justification associated with the integrity and non-bypassability properties of the TSF at the level
of detail of the most detailed evidence presented for the TOE.

Component levelling

142 There is only one component in this family.

Application note

143 FPT_SEP and FPT_RVM are distinct from other SFRs because they largely have no directly
observable interface at the TSF. Rather, they are properties of the TSF that are achieved through
the design of the system, and enforced by the correct implementation of that design. Because of
their pervasive nature, the material needed to provide the assurance that these requirements are

 129

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

being achieved is better suited to a presentation separate from the design decomposition of the
TSF as embodied in ADV_FSP, ADV_HLD, and ADV_LLD. This is not to imply that the
architectural design called for by this component cannot reference or make use of the design
composition material; but it is likely that much of the detail present in the decomposition
documentation will not be relevant to the argument being provided for the architectural design
document.

144 The architectural design document consists of two types of information. The first is the design
information for the entire TSF related to the FPT_SEP and FPT_RVM requirements. This type
of information, like the decompositions for ADV_HLD and ADV_FSP, describes how the TSF
is implemented. The description, however, should be focused on providing information sufficient
for the reader to determine that the TSF implementation is likely not to be compromised, and that
the TSP enforcement mechanisms (that is, those that are implementing SFRs other than
FPT_SEP and FPT_RVM) are likely always being invoked. The level of this description is
commensurate with the most detailed level of decomposition required for the TSF. For example,
the architectural design document for a TOE with only an ADV_FSP.1 component requirement
and no ADV_HLD.1 requirement would contain primarily configuration information that is
visible from the external interface (protections on files that comprise the TSF, for instance). On
the other hand, a TOE on which was levied an ADV_HLD component would have an
architectural design document that contained more information on the internal design of the self-
protection mechanisms (for instance, the memory management architecture).

145 The nature of the FPT_SEP requirement lends itself to a design description much better than
FPT_RVM. For FPT_SEP, mechanisms that implement domain separation (e.g., memory
management, protected processing modes provided by the hardware, etc.) can be identified and
described. However, FPT_RVM is concerned with interfaces that bypass the enforcement
mechanisms. In most cases this is a consequence of the implementation, where if a programmer
is writing an interface that accesses or manipulates an object, it is that programmer’s
responsibility to use interfaces that are part of the TSP enforcement mechanism for the object
and not to try to “go around” those interfaces. For this reason, the information in the architectural
design document for FPT_SEP is somewhat different than that for FPT_RVM, in that for
FPT_SEP it is divided into a design description (for the mechanisms) and a justification
(analysis) that the mechanisms achieve the FPT_SEP functionality. For FPT_RVM, the
information with respect to the mechanisms and justification are not separate because of the
nature of the presentation that needs to be made.

146 For FPT_SEP, the design description should cover how user input is handled by privileged-mode
routines; what hardware self-protection mechanisms are used and how they work (e.g., memory
management hardware, including translation lookaside buffers); how software portions of the
TSF use the hardware self-protection mechanisms in providing their functions; and any software
protection constructs or coding conventions that contribute to meeting FPT_SEP. The questions
that should be answered by this description include:

What basic mechanisms are used to ensure an untrusted program cannot access a TSF’s
address space?

For each interface, what prevents that interface from being used to access TSF programs
and data?

 130

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

What protections are there for TSF configuration data (TSF binaries, startup files, etc.)?

What programmatic protections are in place (buffer overflow prevention)?

147 In addition to the descriptive information indicated in the previous paragraphs, the second type
of information an architectural design document must contain for FPT_SEP is a justification that
the FPT_SEP requirement is being met. This is distinct from the description, and presents an
argument for why the design presented in the description is sufficient.

148 For FPT_SEP, the justification should cover the possible modes by which the TSF could be
compromised, and how the mechanisms implemented in response to FPT_SEP counter such
compromises. The vulnerability analysis might be referenced in this section.

149 For FPT_RVM, the property that the security policies cannot be bypassed applies not only to the
access control policies, but to all other security functionality as well. That is, the design
description should cover resources that are protected under the SFRs (usually FDP_*
components) and functionality (e.g., audit) that is provided by the TSF. The description should
also identify the interfaces that are associated with each of the resources or the functionality; this
might make use of the information in the FSP. This description should also describe any design
constructs, such as object managers, and their method of use. For instance, if routines are to use
a standard macro to produce an audit record, this convention is a part of the design that
contributes to the non-bypassability of the audit mechanism. It’s important to note that “non-
bypassability” in this context is not an attempt to answer the question “could a part of the TSF
implementation, if malicious, bypass a TSP mechanism”, but rather it’s to document how the
actual implementation does not bypass the mechanisms implementing the TSP. This description
typically will include an interface-by-interface analysis showing how the interface either doesn’t
bypass an appropriate TSF mechanism, or it doesn’t use TSF security services and therefore does
not play a role in implementing the FPT_RVM requirement.

150 The detailed analysis demonstrates that whenever a resource protected by an SFR is accessed,
the protection mechanisms of the TSF are invoked (that is, there are no “backdoor” methods of
accessing resources that are not identified and analyzed as part of the
ADV_FSP/ADV_HLD/ADV_LLD analysis, depending on the level of evidence supplied).
Similarly, the description demonstrates that a function described by an SFR is always provided
where required. For example, if the FCO_NRO family were being used the description should
demonstrate that all interfaces either 1) do not deal with transmitting the information identified in
the FCO_NRO component included in the ST, or 2) invoke the mechanism(s) described by the
decomposition documentation.

Dependencies for ADV_ARC_EXP.1
 FPT_SEP.1 TSF Domain Separation

 FPT_RVM.1 Non-bypassability of the TSP

 131

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

E.3 Rationale for ADV_CMP_EXP

Composition information (ADV_CMP)

Objectives

151 This family and the ADV_IFA family are intended to be used to provide information to those
persons responsible for integrating, or assessing the integration of, the TOE with other IT
components in manner that provides confidence that the composed system preserves the security
functions of the TOE. The issue of integrating an evaluated component with other components is
commonly called the composition problem. There are two distinct aspects to this issue:
composition “in the large” and composition “in the small”. While there may be some subjectivity
in categorizing the composition of specific sets of TOEs, in general composition in the large
refers to composing relatively complete products or systems (an OS, firewall, or secure router)
into a larger system. In contrast, composition in the small refers to integrating a TOE whose TSF
has dependencies on the IT environment into that environment. Integrating an evaluated database
onto an OS platform and integrating an OS onto a hardware platform are both example of
composition in the small.

152 This family and the ADV_IFA family are targeted at the problem of composition “in the small.”
The are two aspects to this problem; those for the “base TOE” (covered in ADV_IFA) and those
for the “dependant TOE” (covered in this family). A base TOE is a TOE whose TSF may or may
not have dependencies on the IT environment, but is expected to have other TOEs combined
with it in an operational environment. An operating system would be an example of such a TOE.
A dependant TOE is a TOE whose TSF has dependencies on the IT environment, which may be
implemented in one or more base TOEs. A database or firewall application would be an example
of a dependant TOE.

153 There are no requirements or actions specified that an integrator would follow to actually
compose the various components, nor evaluate the result of that composition effort. Rather, the
purpose of this family is to ensure that the information to perform those two activities is provided
by the TOE developer to the system integrator, persons wishing to analyze a composed system,
or other parties that need that information.

Component levelling

154 Components in this family are levelled based on the amount of information required to be
provided by the developer.

Application note

155 Throughout this family the term “system integrators” is used to refer to the end users of the
information produced as a result of meeting the requirements of this family. It should be noted
that system integrators are not the only consumers of this information. Members of teams

 132

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

responsible for assessing the overall security of a system in which components have been
composed would also find this information key to providing them with a measure of assurance
that the security mechanisms have not be compromised (or the extent to which the mechanisms
may have been compromised) as a result of the integration activity.

156 It is important to note that the term “IT environment” is used throughout this discussion in a
general sense, and not in the sense of the IT Environment section of a PP or ST (although the two
are obviously related). In this family the objective is define all interactions initiated by the TSF
to entities outside of the TSF. Since the TSF may use or be affected by the results of such
interactions, they are all security relevant and need to be described. Note that such interactions
are not limited to those invoking functionality associated with Requirements on the IT
Environment contained in a PP or ST.

157 The crux of the composition issue is the desire to evaluate a component once, then use that
component in a variety of systems without requiring further evaluation of the entire system,
while maintaining a base level of trust in the overall (integrated) system. In practice, this desire
does not seem achievable in the general sense for several reasons:

a) The evaluated version of the component does not include functionality that is used in
the composed system, introducing unknown interactions between that “new”
functionality and the evaluated component;

b) The interactions between the evaluated component and other components in the
system are not documented, which may leave undiscovered interfaces that can be used to
compromise the integrity of the composed system; and

c) A component in a system may be privileged with respect to security policies enforced
by other components in the system, thus creating a potential for the privileged component
to compromise the integrity of the other components in the system.

158 One approach to alleviating the composition problem is to in a sense remove “composition” from
consideration. In this approach, one would specify the entire end system in terms of an overall
architecture and individual components, providing enough detail so that the end system would
meet its functional goals when the components were assembled, and the overall security policy
of the system would be preserved. There are two issues with this approach: first, it does not
allow for arbitrary composition of evaluated products; and second, it requires extremely detailed
specifications in order to ensure that the security properties are preserved once the components
are “composed.”

159 Although the composition problem cannot otherwise be fully addressed, information pertaining
to evaluated products can be made available that mitigate the risks in composing systems and
shorten the assessment time necessary to determine that the level of assurance provided by the
composed system is adequate. Using this approach, this family specifies documentation
requirements on the developer of the TOE that will mandate such documentation be produced
and be made available to integrators. Although there will still be issues when composing

 133

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

evaluated TOEs with non-evaluated TOEs, composing evaluated TOEs in a trustworthy fashion
should be much easier.

160 TOEs whose TSF interacts with the IT environment outside of the TSF invoke functions
provided by the IT environment in performing the TOE Security Functions (e.g., system calls,
communication with the IT environment over a network connection with a standard or custom
network protocol). In these cases, those invoked interfaces, while not TSFI, need to be described
for those charged with configuring the TOE for end users. The rationale for requiring this
documentation is to aid integrators of the TOE and the underlying system to determine what
interfaces in the underlying system might have adverse effects on the TOE, and to provide
information to analysts charged with evaluating the trustworthiness of the composition of this
TOE with another TOE. Additionally, evaluators of the TOE will be able to gain assurance that
all requirements on the IT environment are specified in the ST by analyzing this information.

161 In deciding what interfaces need to be documented for these components, it is important to
distinguish the set of usable interfaces as compared to the set of interfaces that may be used in
one particular environment. The easiest example is a TOE that runs on (and therefore has
dependencies on) both BSD-based Unix systems as well as System V-based Unix systems. If it
makes different system calls depending on the type of Unix system upon which it is running, the
union of both sets of system calls are what needs to be identified and described to meet the
ADV_CMP.1.1C and ADV_CMP.2.1C element.

162 The amount of information presented in the composition information should be commensurate
with that provided in the functional specification. This is addressed by the two components in
this family. The ADV_CMP.1 component should be used when HLD.1 and FSP.1 are included
in the ST, while the requirements for the ADV_CMP.2 component are more commensurate with
those in HLD.2 and FSP.2.

Dependencies for ADV_CMP_EXP.1
 ADV_FSP_EXP.1 Descriptive Functional Specification

 ADV_HLD_EXP.1 Descriptive High-Level Design

E.4 Rationale for ADV_FSP_EXP

Functional specification (ADV_FSP)

Objectives

163 The functional specification is a description of the user-visible interface to the TSF. It is an
instantiation of the TOE security functional requirements. The functional specification has to
completely address all of the user-visible TOE security functional requirements.

 134

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Component levelling

164 The components in this family are levelled on the basis of the degree of detail provided for the
external interfaces to the TSF, and the degree of formalism required of the functional
specification.

Application note

165 A description of the TSF interfaces (TSFI) provides fundamental evidence on which assurance in
the TOE can be built. This assurance is gained primarily through testing of the TSF through its
TSFI. The more complete and accurate the description, the more assurance can be gained
through the testing activities. This concept is reflected in the required documentation from the
developer as specified in the various hierarchical components of this family.

166 Fundamentally, the functional specification provides a description of what the TSF provides to
users (as opposed to the high-level design and low-level design, which provide a description of
how the functionality is provided). Further, the functional specification provides this information
in the form of interface (TSFI) documentation.

167 In order to identify the software interfaces to the TSF, the parts of the TOE that make up the TSF
must be identified. This identification is formally a part of HLD analysis, but is implicitly
performed (through identification and description of the TSFI) by the developer in cases where
ADV_HLD is not included in the assurance package. In this analysis, a portion of the TOE is
considered to be in the TSF under two conditions:

a) The software contributes to the satisfaction of security functionality specified by a
functional requirement in the ST. This is typically all software that runs in a privileged
state of the underlying hardware, as well as software that runs in unprivileged states that
performs security functionality.

b) The software used by administrators in order to perform security management
activities specified in the guidance documentation. These activities are a superset of those
specified by any FMT_* functional requirements in the ST.

168 Identification of the TSFI is a complex undertaking. The TSF is providing services and
resources, and so the TSFI are interfaces to the security services/resources the TSF is providing.
This is especially relevant for TSFs that have dependencies on the IT environment, because not
only is the TSF providing security services (and thus exposing TSFI), but it is also using services
of the IT environment. While these are (using the general term) interfaces between the TSF and
the IT environment, they are not TSFI. Nonetheless, it is vital to document their existence to
integrators and consumers of the system, and thus documentation requirements for these
interfaces are specified in ADV_CMP.

169 This concept (and concepts to be discussed in the following paragraphs) is illustrated in the
following figure.

 135

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

A1

A3

A2

B1

B2

= TSF

= IT Environment

DB

OS

PLG

SRV

B3

Figure E-3 Interfaces in a DBMS System

170 Figure E-3 illustrates a TOE (a database management system) that has dependencies on the IT
environment. The shaded boxes represent the TSF, while the unshaded boxes represent IT
entities in the environment. The TSF comprises the database engine and management GUIs
(represented by the box labelled “DB”) and a kernel module that runs as part of the OS that
performs some security function (represented by the box labelled “PLG”). The TSF kernel
module has entry points defined by the OS specification that the OS will call to invoke some
function (this could be a device driver, or an authentication module, etc.). The key is that this
pluggable kernel module is providing security services specified by functional requirements in
the ST. The IT environment consists of the operating system (represented by the box labelled
“OS”) itself, as well as an external server (labelled SRV). This external server, like the OS,
provides a service that the TSF depends on, and thus needs to be in the IT environment.
Interfaces in the figure are labelled Ax for TSFI, and Bx for interfaces to be documented in
ADV_CMP. Each of these groups of interfaces is now discussed.

171 Interface group A1 represents the prototypical set of TSFI. These are interfaces used to directly
access the database and its security functionality and resources.

172 Interface group A2 represent the TSFI that the OS invokes to obtain the functionality provided
by the pluggable module. These are contrasted with interface group B3, which represent calls
that the pluggable module makes to obtain services from the IT environment.

173 Interface group A3 represents TSFI that “pass through” the IT environment. In this case, the
DBMS communicates over the network using a proprietary application-level protocol. While the
IT environment is responsible for providing various supporting protocols (e.g., Ethernet, IP,
TCP), the application layer protocol that is used to obtain services from the DBMS is a TSFI and

 136

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

must be documented as such. The dotted line indicates return values/services from the TSF over
the network connection.

174 Non-TSFI interfaces pictured are labelled Bx. Interface group B1 is the most complex of these,
because the architecture of the system and environmental assumptions and conditions will drive
its analysis. In the first case, assume that, either through an environmental assumption or an IT
environmental requirement, the network link between the DB and SRV is protected (it could be
on a separate subnet, or it could be protected by a firewall such that only the DB could connect to
the port on the SRV) such that only the DB has access to the SRV. In this case, the interface
needs to be documented in the composition guidance (ADV_CMP) only, since untrusted users
are unable to gain access.

175 However, consider the case where SRV is now just “somewhere on the network”, and now the
port that the DB opens up to communicate with the SRV is “exposed” to untrusted users. In this
case, while the interface presented by the DB (the TSF) still only needs to be documented in
ADV_CMP, additional considerations with respect to vulnerabilities may need to be documented
as part of the AVA_VLA activity because of this exposure. In particular, since the TSF is
receiving (and trusting) data from this external source, some consideration will have to be given
(based on the desired assurance) to “man-in-the-middle” attacks.

176 In the course of performing its functions, the DB will make system calls down to the OS. This is
represented by interface group B2. While these calls are not part of the TSFI, they are an
interface that needs to be documented in the ADV_CMP.

177 Interface group B3, mentioned previously in connection with interface group A2, is similar to
interface group B2 in that these are calls made by the TSF to the IT environment to perform
services for the TSF.

178 Having discussed the interfaces in general, the types of TSFI are now discussed in more detail.
This discussion categorizes the TSFI into the two categories mentioned previously: TSFI to
software directly implementing the SFRs, and TSFI used by administrators.

179 TSFI in the first category are varied in their appearance in a TOE. Most commonly interfaces are
thought of as those described in terms of Application Programming Interfaces (APIs), such as
kernel calls in a Unix-like operating system. However, interfaces also may be described in terms
of menu choices, check boxes, and edit boxes in a GUI; parameter files (the *.INI files and the
registry for Microsoft Windows systems); and network communication protocols at all levels of
the protocol stack.

180 TSFI in the second category are more complex. While there are three cases that need to be
considered (discussed below), for all cases there is an “additional” requirement that the functions
that an administrator uses to perform their duties—as documented in administrative guidance—
also are part of the TSFI and must be documented and shown to work correctly. The individual
cases are as follows:

a) The administrative tool used is also accessible to untrusted users, and runs with some
“privilege” itself. In this case the TSFI to be described are similar to those in the first
category because the tool itself is privileged.

 137

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

b) The administrative tool uses the privileges of the invoker to perform its tasks. In this
case, the interfaces supporting the activities that the administrator is directed to do by the
administrative guidance (AGD_ADM, including FMT_* actions) are part of the TSFI.
Other interfaces supported by the tool that the administrator is directed not to use (and
thus play no role in supporting the TSP), but that are accessible to non-administrators, are
not part of the TSFI because there are no privileges associated with their use. Note that
this case differs from the previous one in that the tool does not run with privilege, and
therefore is not in and of itself interesting from a security point of view. Also note that if
FPT_SEP is included in the ST, the executable image of such tools need to be protected
so that an untrusted user cannot replace the tool with a “trojan” tool.

c) The administrative tool is only accessible to administrative users. In this case the TSFI
are identified in the same manner as the previous case. Unlike the previous case,
however, the evaluator ascertains that an untrusted user is unable to invoke the tool if
FPT_SEP is included in the ST.

181 It is also important to note that some TOEs will have interfaces that one might consider part of
the TSFI, but environmental factors remove them from consideration (an example is the case of
interface group B1 discussed earlier). Most of these examples are for TOEs to which untrusted
users have restricted access. For example, consider a firewall that untrusted users only have
access to via the network interfaces, and further that the network interfaces available only
support packet-passing (no remote administration, no firewall-provided services such as telnet).
Further suppose that the firewall had a command-line interface that logged-in administrators
could use to administer the system, or they could use a GUI-based tool that essentially translated
the GUI-based checkboxes, textboxes, etc., into scripts that invoked the command-line utilities.
Finally, suppose that the administrators were directed in the administrative guidance to use the
GUI-based tool in administering the firewall. In this case, the command-line interface does not
have to be documented because it is inaccessible to untrusted users, and because the
administrators are instructed not use it.

182 The term “administrator” above is used in the sense of an entity that has complete trust with
respect to all policies implemented by the TSF. There may be entities that are trusted with
respect to some policies (e.g., audit) and not to others (e.g., a flow control policy). In these cases,
even though the entity may be referred to as an “administrator”, they need to be treated as
untrusted users with respect to policies to which they have no administrative access. So, in the
previous firewall example, if there was an auditor role that was allowed direct log-on to the
firewall machine, the command-line interfaces not related to audit are now part of the TSFI,
because they are accessible to a user that is not trusted with respect to the policies the interfaces
provide access to. The point is that such interfaces need to be addressed in the same manner as
previously discussed.

183 Hardware interfaces exist as well. Functions provided by the BIOS of various devices may be
visible through a “wrapper” interface such as the IOCTLs in a Unix operating system. If the TOE
is or includes a hardware device (e.g., a network interface card), the bus interface signals, as well
as the interface seen at the network port, must be considered “interfaces.” Switches that can
change the behaviour of the hardware are also part of the interface.

 138

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

184 As indicated above, an interface exists at the TSF boundary if it can be used (by an
administrator; untrusted user; or another TOE) to affect the behaviour of the TSF. The
requirements in this family apply to all types of TSFI, not just APIs.

185 All TSFI are security relevant, but some interfaces (or aspects of interfaces) are more critical and
require more analysis than other interfaces. If an interface plays a role in enforcing any security
policy on the system (that is, if the effects of the interface can be traced to one of the SFRs levied
on the TSF), then that interface is security enforcing. Such policies are not limited to the access
control policies, but also refer to any functionality provided by one of the SFRs contained in the
ST (with exceptions for FPT_SEP and FPT_RVM as detailed below). Note that it is possible that
an interface may have various effects and exceptions, some of which may be security enforcing
and some of which may not.

186 FPT_SEP and FPT_RVM are SFRs that require a different type of analysis from other SFRs.
These requirements are architecturally related, and their implementation (or lack thereof) is not
easily (or efficiently) testable at the TSFI. From a terminology standpoint, although
implementation (and the associated analysis) of FPT_SEP and FPT_RVM is critical to the
trustworthiness of the system, these two SFRs will not be considered as SFRs that are applicable
when determining the set of security-enforcing TSFIs as defined in the previous paragraph.

Editor Note: Although FPT_SEP and FPT_RVM are excepted here (and addressed in
ADV_ARC), there still may be mechanisms in the TSF that are used in meeting
these requirements that could and should be tested. The ATE requirements
should be modified to ensure that any such testable mechanisms used to
implement FPT_SEP (and possibly FPT_RVM) are included (rather than just
depending upon testing of “TSFI”, since TSFI are defined by the FSP
requirements).

187 Interfaces (or parts of an interface) that need only to function correctly in order for the security
policies of the system to be preserved are termed security supporting. A security supporting
interface typically plays a role in supporting the architectural requirements (FPT_SEP or
FPT_RVM), meaning that as long as it can be shown that it does not allow the TSF to be
compromised or bypassed no further analysis against SFRs is required. In order for an interface
to be security supporting it must have no security enforcing aspects. In contrast, a security
enforcing interface may have security supporting aspects (for example, the ability to set the
system clock may be a security enforcing aspect of an interface, but if that same interface is used
to display the system date that effect may only be security supporting).

188 A key aspect for the assurance associated with this component is the concept of the evaluator
being able to verify that the developer has correctly categorized the security enforcing and
security supporting interfaces. As more information about the TSFI becomes available, the
greater the assurance that can be gained that the interfaces are correctly categorized/analyzed.
The requirements are structured such that, at the lowest level, the information required for
security supporting interfaces is the minimum necessary in order for the evaluator to make this
determination in an effective manner. At higher levels, more information becomes available so
that the evaluator has greater confidence in the designation.

 139

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

189 For the purposes of the requirements, interfaces are specified (in varying degrees of detail) in
terms of their parameters, parameter descriptions, effects, exceptions, and error messages.
Additionally, the purpose of each interface, and the way in which the interface is used (both from
the point of view of the external stimulus (e.g., the programmer calling the API, the
administrator changing a setting in the registry) and the effect on the TSFI that stimulus has)
must be specified. This description of method of use must also specify how those administrative
interfaces that are unable to be successfully invoked by untrusted users (case “c” mentioned
above) are protected.

190 Parameters are explicit inputs to and outputs from an interface that control the behaviour of that
interface. For examples, parameters are the arguments supplied to an API; the various fields in a
packet for a given network protocol; the individual key values in the Windows Registry; the
signals across a set of pins on a chip; etc.

191 A parameter description tells what the parameter is in some meaningful way. For instance, the
interface “foo(i)” could be described as having “parameter i which is an integer”; this is not an
acceptable parameter description. A description such as “parameter i is an integer that indicates
the number of users currently logged in to the system.” is required.

192 Effects of an interface describe what the interface does. The effects that need to be described in
an FSP are those that are visible at any external interface (for instance, audit activity caused by
the invocation of an interface (assuming audit requirements are included in the ST) should be
described, even though that “effect” is generally not visible through the invoked interface), not
necessarily limited to the one being specified. The “effect” of an API call is not just the error
code it returns, but the state changes that occur in the TSF as a result of that call. Also,
depending on the parameters of an interface, there may be many different effects (for instance,
an API might have the first parameter be a “subcommand”, and the following parameters be
specific to that subcommand. The IOCTL API in some Unix systems is an example of such an
interface).

193 Exceptions refer to the processing associated with “special checks” that may be performed by an
interface. An example would be an interface that has a certain set of effects for all users except
the Superuser; this would be an exception to the normal effect of the interface. Use of a privilege
for some kind of special effect would also be covered in this topic.

194 Documenting the errors associated with the TSF is not as straight-forward as it might appear, and
deserves some discussion. A general principle is that errors generated by the TSF that are visible
to the user should be documented. These errors can be the direct result of invoking a TSFI (an
API call that returns an error); an indirect error that is easily tied to a TSFI (setting a parameter
in a configuration that is error-checked when read, returning an immediate notification); or an
indirect error that is not easily tied to a TSFI (setting a parameter that, in combination with
certain system states, generates an error condition that occurs at a later time. An example might
be resource exhaustion of a TSF resource due to setting a parameter to too low of a value).

195 Errors can take many forms, depending on the interface being described. For an API, the
interface itself may return an error code; set a global error condition, or set a certain parameter
with an error code. For a configuration file, an incorrectly configured parameter may cause an
error message to be written to a log file. For a hardware PCI card, an error condition may raise a
signal on the bus, or trigger an exception condition to the CPU.

 140

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

196 For the purposes of the requirements, errors are divided into two categories. The first category
includes direct errors, which are directly related to a TSFI; examples are API calls and
parameter-checking for configuration files. For this category of errors, the functional
specification must document all of the errors that can be returned as a result of invoking the
interface, and, from it, a reader should be able to associate an interface with the errors it is
capable of generating. The second category includes indirect errors, which are errors that are not
directly tied to the invocation of a TSFI, but which are reported to the user as a result of
processing that occurs in the TSF. It should be noted that the condition that causes the indirect
error can be documented; it is generally much harder to document all the ways in which that
condition can occur.10 Because of the difficulty associated with documenting all of the ways to
cause an error, and because of the cost of documenting all indirect errors compared to the benefit
of having them documented, indirect errors are not required to be fully documented until the
highest EALs.

197 If an interface plays a role in enforcing any security policy on the system, that interface is
security enforcing. Such policies are not limited to the access control policies, but also refer to
any functionality provided by one of the SFRs contained in the ST.

198 An important factor in determining the set of security-supporting interfaces is whether there
exists the threat of accidental or malicious bypass or misuse of the TSF (generally indicated by
including components from the FPT_RVM and/or FPT_SEP families in the ST). In the case that
there is such a threat, the TSFI are can be categorized as security enforcing and security
supporting as discussed above. In the case where there isn’t this threat, then there are only
security enforcing interfaces, and these are defined with respect to the security functions that the
TSF implements. It should be noted that there is no such thing as a “non-security-relevant TSFI”.
An interface either allows access to a portion of the TSF or it doesn’t. If it allows access to the
TSF, then it is by definition security relevant, and is either security enforcing or security
supporting.

199 Having defined the terms, the following amplification on component levelling can be given. At
all levels, the purpose and method of use of the TSFI must be provided.

200 At ADV_FSP.1, because there is no dependency on the HLD requirements (which require that
the TSFI be identified in the high-level design), there is lower assurance that the functional
specification of the TSFI is complete. At this lowest level, the developer is required provide the
purpose and method of use for the TSFI. They need to identify parameters, and to provide
parameter descriptions for those parameters, for all TSFI.

201 At ADV_FSP.2, there is a dependency on ADV_HLD which requires that the TSF be identified
(which is true for all higher ADV_FSP components). Now more assurance can be gained that the
functional specification covers the entire TSF. Additionally, for the TSFI designated as security
enforcing, they have to describe the security-enforcing effects, security-enforcing exceptions,
and direct error messages that can occur in relation to security-enforcing behavior associated
with the TSFI. At this level, the developer performs the initial determination of the TSF (and
thus the TSFI) and designates the interfaces as security enforcing or security supporting, which

10This may even be impossible, if the error message is for a condition that the programmer does not expect
to occur, but is inserted as part of “defensive programming.”

 141

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

the evaluators confirm through their evaluation activities. The additional information provided
by the developer allows the evaluator to have some assurance that the developer has correctly
designated the interfaces.

202 At ADV_FSP.3, the developer must now, in addition to the information required at ADV_FSP.2
for the effects, exceptions, and error messages, provide enough information about the security
supporting effects, exceptions, and error messages associated with the TSFI so that it can be
determined by the evaluator that they are not security enforcing. At this level, the evaluator has
more information to confirm the developer’s determination of security enforcing vs. security
supporting.

203 At ADV_FSP.4, the developer needs to provide complete documentation of all TSFI. This means
that in addition to the documentation required for the TSFI at ADV_FSP.3, the developer also
needs to provide a description of all exceptions, error messages (direct and indirect), and effects
for all TSFI. This provides the evaluators with information that, when analysed, will increase the
assurance that all of the security enforcing aspects of the TSFI have been characterized, thus
leading to more complete testing and increased confidence in the vulnerability assessment
activities.

204 At ADV_FSP.5 and ADV_FSP.6, the only significant additional requirements are the
presentation of the information needs to be semi-formal and formal, respectively. At
ADV_FSP.6 slightly more information is required for indirect error messages as well.

205 The ADV_FSP.*.2E elements within this family define a requirement that the evaluator
determine that the functional specification is an accurate and complete instantiation of the TOE
security functional requirements. This provides a direct correspondence between the TOE
security functional requirements and the functional specification, in addition to the pairwise
correspondences required by the ADV_RCR family. Although the evaluator may use the
evidence provided in ADV_RCR as an input to making this determination, ADV_RCR cannot be
the basis for a positive finding in this area. The requirement for completeness is intended to be
relative to the level of abstraction of the functional specification.

206 It should be recognized that there exist functional requirements whose functionality is manifested
wholly or in part architecturally, rather than through a specific mechanism. An example of this is
FPT_SEP, where one cannot specify the “set” of interfaces that implement the self-protection
“function.” This type of “functionality” typically is verified by examination of the design and (at
the higher assurance levels) implementation of the TSF. Another example is the implementation
of mechanisms implementing the FPT_RIP requirements. Such mechanisms typically are
implemented to ensure an effect isn’t present, which is difficult to test and typically has the be
verified through analysis as well.

207 In the cases where such functional requirements are included in the ST, it is expected that
evaluators recognize that there may be SFRs of this type that have no interfaces, and that this
should not be considered a deficiency in the functional specification. The terminology in the
ADV_FSP.*.2E requirements referring to “user-visible TOE security functional requirements” is
used to exclude this type of analysis for this family; the analysis for these types of requirements
is required by the ADV_ARC family components.

208 In the context of the level of formality of the functional specification, informal, semiformal and

 142

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

formal are considered to be hierarchical in nature. Thus, ADV_FSP.[1-4] may also be met with
either a semiformal or formal functional specification, provided that it is supported by informal,
explanatory text where appropriate. In addition, ADV_FSP.5 may also be met with a formal
functional specification.

Dependencies for ADV_FSP_EXP.6
 ADV_HLD_EXP.1 Descriptive High-level Design

 ADV_RCR_EXP.1 Subsystem Correspondence Demonstration

E.5 Rationale for ADV_HLD_EXP

High-level design (ADV_HLD)

Objectives

209 The high-level design of a TOE provides both context for a description of the TSF, and a
thorough description of the TSF in terms of major structural units (i.e. subsystems). It relates
these units to the functions that they provide. The high-level design requirements are intended to
provide assurance that the TOE provides an architecture appropriate to implement the TOE
security functional requirements.

210 To provide context for the description of the TSF, the high-level design describes the entire TOE
at a high level in terms of subsystems. From this description the reader should be able to
distinguish between the subsystems that are part of the TSF and those that are not. The remainder
of the high-level design document then describes the TSF in more detail.

211 The high-level design provides a further-refined description of the TSF from that presented in the
functional specification. The functional specification provides a description of what the TSF
does at its interface; the high-level design provides more insight into the TSF by describing how
the TSF works in order to perform the functions specified at the TSFI. For each subsystem of the
TSF, the high-level design identifies the TSFI implemented in the subsystem, describes the
purpose of the subsystem and how the implementation of the TSFI (or portions of the TSFI) is
designed. The interrelationships of subsystems are also defined in the high-level design. These
interrelationships will be represented as data flows, control flows, etc. among the subsystems. It
should be noted that this description is at a high-level; low-level implementation detail is not
necessary at this level of abstraction.

Component levelling

212 The components in this family are levelled on the basis of the amount of information that is
required to be presented about the subsystems of the TSF, and on the degree of formalism

 143

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

required of the high-level design.

Application note

213 The developer is expected to describe the design of the TSF in terms of subsystems. The term
“subsystem” is used here to express the idea of decomposing the TSF into a relatively small
number of parts. While the developer is not required to actually have “subsystems”, the
developer is expected to represent a similar level of decomposition. For example, a design may
be similarly decomposed using “layers”, “domains”, or “servers”.

214 A security-enforcing subsystem is a subsystem that provides mechanisms for enforcing an
element of the TSP, or directly supports a subsystem that is responsible for enforcing the TSP. If
a subsystem provides (implements) a security enforcing TSFI, then the subsystem is security
enforcing. If a subsystem does not provide any security enforcing TSFIs, its mechanisms still
must preserve the security of the TSF; such subsystems are termed security supporting.

215 The set of SFRs that determine the TSP for the purposes of ADV_HLD components do not
include FPT_SEP and FPT_RVM. Those two architectural functional requirements require a
different type of analysis than that needed for all other SFRs. A security-enforcing subsystem is
one that is designed to implement an SFR other than FPT_SEP and FPT_RVM; requirements
pertaining to design information and justification for the FPT_SEP and FPT_RVM requirements
are contained in the ADV_ARC components.

216 As more information is described pertaining to a subsystem, increasing assurance can be gained
that 1) the design of the subsystem supports the security functions; 2) the design of the
subsystem preserves the security of the system; and 3) the subsystem is correctly characterized as
security enforcing or security supporting.

217 For TOEs that contain requirements on the IT Environment, there is a requirement to supply
information at the “subsystem” level of detail that describes the functionality that the TOE is
dependant upon. This description will not be extremely detailed, as the actual design and
implementation of the dependant functionality is likely not known. However, the description
should be detailed enough so that the evaluator can determine how the TOE/TSF interacts with
the functionality provided by the IT Environment, and use this information to help determine
whether the interfaces (ADV_FSP, ADV_CMP) are completely described.

218 Given this discussion, a summary of the different components of this family can now be given.

219 For ADV_HLD.1, the developer describes the TOE in terms of subsystems, identifying those
that are part of the TSF (both security enforcing and security supporting) and those that are not.
This description also must provide enough detail so that the reader can understand why the
subsystems that are not part of the TSF are so designated. In addition, the developer provides a
somewhat detailed description of the security-enforcing subsystems, and further describes the
security-enforcing functionality associated with those subsystems. Additionally, the developer
identifies and describes the interactions between the security-enforcing subsystems.

220 At ADV_HLD.2, the developer must now provide some description of security-supporting
functionality. In order to provide confidence that the subsystems have been classified correctly,
and to provide a greater understanding of the system so that this confidence is increased, they

 144

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

must summarize functionality not described for security-enforcing subsystems at ADV_HLD.1;
the functionality of the non-security-enforcing modules; and the interactions between subsystems
that were not described in ADV_HLD.1. They do not, however, need to provide the same level
of detail for the security-supporting subsystems as they do for the security-enforcing subsystems.

221 At ADV_HLD.3, a complete description of all of the subsystems of the TSF, and their
interactions, is needed. This provides more assurance that the description of the security-
enforcing aspects of the subsystems is complete.

222 ADV_HLD.4 adds rigor (semiformal specification) to the descriptions of the TSF subsystems
and their interactions. It is important to note that the formality only applies to the description of
the TSF; describing the TOE in terms of subsystems in order to identify the subsystems that
comprise the TSF can still be presented in an informal manner if the developer desires.

223 As with the ADV_FSP components, the set of SFRs that determine the TSP for the purposes of
this component do not include FPT_SEP and FPT_RVM. Those two architectural functional
requirements require a different type of analysis than that needed for all other SFRs. A security-
enforcing subsystem is one that is designed to implement an SFR other than FPT_SEP and
FPT_RVM; the design information and justification for the FPT_SEP and FPT_RVM
requirements is given as a result of the ADV_ARC components.

224 The ADV_HLD component requires that the developer must identify all subsystems of the TSF
(not just the security-enforcing ones). For the lower components, the security-enforcing aspects
of the subsystems need to be described in more detail than the security-supporting aspects. The
descriptions for the security-enforcing aspects should provide the reader with enough
information to determine how the implementation of the SFRs is designed, while the description
for the security-supporting aspects should provide the reader enough assurance to determine that
1) all security-enforcing behavior has been identified and 2) the subsystems or portions of
subsystems that are security supporting have been correctly classified.

225 The ADV_HLD.*.2E elements within this family define a requirement that the evaluator
determine that the high-level design is an accurate and complete instantiation of the TOE
security functional requirements. This provides a direct correspondence between the TOE
security functional requirements and the high-level design, in addition to the pairwise
correspondences required by the ADV_RCR family. Although the evaluator may use the
evidence provided in ADV_RCR as an input to making this determination, ADV_RCR cannot be
the basis for a positive finding in this area. The requirement for completeness is intended to be
relative to the level of abstraction of the high-level design.

226 Note the term “user visible” is used to highlight the fact that FPT_SEP and FPT_RVM are not
explicitly analysed in this fashion by the ADV_HLD.*.2E elements; the analysis for those
requirements is done as part of the activity for the ADV_ARC components.

227 In the context of the level of formality of the high-level design, informal and semiformal are
considered to be hierarchical in nature. Thus, ADV_HLD.1.3C, ADV_HLD.2.3C, and
ADV_HLD.3.3C may also be met with a semiformal high-level design.

Dependencies for ADV_HLD_EXP.4
 ADV_FSP_EXP.1 Descriptive Functional Specification

 145

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

 ADV_RCR_EXP.1 Subsystem Correspondence Demonstration

E.6 Rationale for ADV_IFA_EXP

Information Availability (ADV_IFA)

Objectives

228 This family and the ADV_CMP family are intended to be used to provide information to those
persons responsible for integrating, or assessing the integration of, the TOE with other IT
components in manner that provides confidence that the composed system preserves the security
functions of the TOE. The issue of integrating an evaluated component with other components is
commonly called the composition problem. There are two distinct aspects to this issue:
composition “in the large” and composition “in the small”. While there may be some subjectivity
in categorizing the composition of specific sets of TOEs, in general composition in the large
refers to composing relatively complete products or systems (an OS, firewall, or secure router)
into a larger system. In contrast, composition in the small refers to integrating a TOE that has
requirements on the IT environment into that environment. Integrating an evaluated database
onto an OS platform and integrating an OS onto a hardware platform are both example of
composition in the small.

229 This family and the ADV_CMP family are targeted at the problem of composition “in the small.”
The are two aspects to this problem; those for the “base TOE” (covered by this family) and those
for the “dependant TOE” (covered by the ADV_CMP family). A base TOE is a TOE that may or
may not have requirements on the IT Environment, but is expected to have other TOEs combined
with it in an operational environment. An operating system would be an example of such a TOE.
A dependant TOE is a TOE that has requirements on the IT Environment, which may be satisfied
by one or more base TOEs. A database or firewall application would be an example of a
dependant TOE.

230 There are no requirements or actions specified that an integrator would follow to actually
compose the various components, nor evaluate the result of that composition effort. Rather, the
purpose of this family is to ensure that the information to perform an integration activity is
provided by the TOE developer to system integrators, persons wishing to analyze a composed
system, or other parties that need that information.

Component levelling

231 There is only one component in this family.

Application notes

 146

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

232 Throughout this family the term “system integrator” is used to refer to the end users of the
information produced as a result of meeting the requirements of this family. It should be noted
that system integrators are not the only consumers of this information. Members of teams
responsible for assessing the overall security of a system in which components have been
composed would also find this information key to providing them with a measure of assurance
that the security mechanisms have not be compromised (or the extent to which the mechanisms
may have been compromised) as a result of the integration activity.

233 The crux of the composition issue is the desire to evaluate a component once, then use that
component in a variety of systems without requiring further evaluation of the entire system,
while maintaining a base level of trust in the overall (integrated) system. In practice, this desire
does not seem achievable in the general sense for several reasons:

a) The evaluated version of the component does not include functionality that is used in
the composed system, introducing unknown interactions between that “new”
functionality and the evaluated component;

b) The interactions between the evaluated component and other components in the
system are not documented, which may leave undiscovered interfaces that can be used to
compromise the integrity of the composed system; and

c) A component in a system may be privileged with respect to security policies enforced
by other components in the system, thus creating a potential for the privileged component
to compromise the integrity of the other components in the system.

234 One approach to alleviating the composition problem is to in a sense remove “composition” from
consideration. In this approach, one would specify the entire end system in terms of an overall
architecture and individual components, providing enough detail so that the end system would
meet its functional goals when the components were assembled, and the overall security policy
of the system would be preserved. There are two issues with this approach: first, it does not
allow for arbitrary composition of evaluated products; and second, it requires extremely detailed
specifications in order to ensure that the security properties are preserved once the components
are “composed.”

235 Although the composition problem cannot otherwise be fully addressed, information pertaining
to evaluated products can be made available that mitigate the risks in composing systems and
shorten the assessment time necessary to determine that the level of assurance provided by the
composed system is adequate. Using this approach, this family specifies documentation
requirements on the developer of the TOE that will mandate such documentation be produced
and be made available to integrators. Although there will still be issues when composing
evaluated TOEs with non-evaluated TOEs, composing evaluated TOEs in a trustworthy fashion
should be much easier.

236 For the component in this family, the developer must make available its functional specification
(that is, the evidence supplied to meet the ADV_FSP requirement), test coverage analysis

 147

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

(supplied for ATE_COV and ATE_DPT), and test procedure descriptions (provided for the
ATE_FUN component). They also must supply composition information (supplied for
ADV_CMP). It should be noted that for TOEs that make no calls out to the IT environment there
will be no composition information generated, so only the functional specification and test
information will need to be supplied in such cases.

237 While this information is required to be made available to systems integrators, it is also
important to ensure that the developer is not placed at a competitive disadvantage by being
forced to supply a competitor with sensitive information as a result of meeting these
requirements. The intent of the requirements in this component is not for the developer to make
the information publicly available; rather, the developer must agree to make it available under
conditions set forth in the Integrators Disclosure Agreement (ADV_CMP.1.3D) which could
include, for instance, a non-competition agreement or a non-disclosure agreement. Making this
information available allows the integrator to use information generated for the dependant TOE
(the ADV_CMP components) to identify interfaces used in the base TOE, and then determine
whether those interfaces were considered as part of the TSFI, and the extent to which the
interface was tested in the base product.

Dependencies for ADV_IFA_EXP.1
 ADV_CMP_EXP.1 Basic Composition Information

 ADV_FSP_EXP.1 Descriptive Functional Specification

 ADV_HLD_EXP.1 Descriptive High-Level Design

 ATE_COV.1 Evidence of Coverage

 ATE_FUN.1 Functional Testing

E.7 Rationale for ADV_IMP_EXP

Implementation Representation (ADV_IMP)

Objectives

238 The function of the ADV_IMP family is for the developer to provide the actual implementation
of the TOE in a form that this understandable to the evaluators. This is provided for use in
analysis activities (analyzing the low-level design, for instance) to demonstrate that the TOE
conforms its design and to provide a basis for analysis in other areas of the evaluation (e.g. the
search for vulnerabilities). The implementation representation is expected to be in a form that
captures the detailed internal workings of the TSF. This may be software source code, firmware
source code, hardware diagrams and/or chip specifications, etc. At higher levels, proof must also
be offered that portions of the implementation representation match the implementation itself

 148

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

(e.g., object code).

Component levelling

239 The components in this family are levelled on the basis of the amount of information provided in
addition to the implementation representation, and the activities performed on this additional
information.

Editor Note: As currently written, a distinction is made at the .3 level between the portion of
the TSF implemented in hardware and that implemented in compiled or
interpreted entities (software and firmware). The .3 level requires that the
implementation essentially be “reverse-engineered”, which is easier to do for
software/firmware than it is for hardware. For software/firmware only
significant expertise is required. For hardware, not only is significant expertise
required, but expensive equipment is also required to physically examine,
measure, and manipulate the hardware. Because hardware is generally
functionally tested in a more thorough manner, and because the added
assurance from reverse-engineering the hardware does not initially appear to be
commensurate with the costs involved in obtaining that assurance, the
additional requirements at the .3 level will only apply to the software/firmware
portions of the TSF implementation.

Application note
240 The implementation representation is used to express the notion of the least abstract

representation of the TSF, specifically the one that is used to create the TSF itself without further
design refinement. Source code that is then compiled or a hardware diagrams and/or chip
specifications that are used to build the actual hardware are examples of parts of an
implementation representation.

241 The entire implementation representation is provided to ensure that analysis activities are not
curtailed due to lack of information. The implementation representation is supplied to allow
analysis of other TOE design decompositions (e.g., functional specification, low-level design),
and to gain confidence that the higher-level security mechanisms described in the design actually
appear to be implemented in the TOE. Conventions in some forms of the implementation
representation may make it difficult or impossible to determine from just the implementation
representation itself what the actual result of the compilation or run-time interpretation will be.
For example, compiler directives for C language compilers will cause the compiler to exclude or
include entire portions of the code. For this reason, it’s important that such “extra” information
be provided so that the implementation representation can be accurately determined.

242 Even given this most detailed description of the TSF, there is still a question of whether the
actual implementation reflects what is written in the implementation representation. It is possible
that compiler functions (such as optimization) or outright errors (either due to maliciousness or
programming errors) could cause the implementation that runs on the hardware base to be
different from the implementation representation in such a way that the security mechanisms of
the system are compromised. This compromise will likely be one involving protection of the

 149

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

TSF itself, since functional compromises (unless malicious) should be detectable through testing.

243 There are two methods defined for addressing this threat. The first is to use tools designed for
debugging the TSF to step through the implementation to ensure that the requirements are
implemented accurately, and that the functionality is security preserving. While this adds
assurance over examination of the implementation and functional testing (because observations
are being made internal to the TSF, rather than just at the external interface), it is inadequate for
detecting artifacts that may cause the policy enforcement mechanisms to fail (e.g., buffer
overflows resulting from compiler optimizations, and therefore not visible from review of the
implementation representation).

244 The second, more definitive, method is to start with the implementation itself (the compiled code
that runs on the hardware) and de-compile it. This de-compiled version can then be compared to
functionality described in other evidence supplied for the evaluation (e.g., low-level design, the
implementation representation) to determine that it is security preserving. Comparing it to the
implementation representation alone may be problematic, since optimizations may affect
ordering of statements, storage of variables, etc.

245 What is likely required for this method is a combination of reverse-compilation and run-time
activities, calling for the developer to supply tools used in the debugging the TSF
implementation. Stepping through the code and being able to affect the implementation
constructs will allow confidence that the implementation completely and accurately reflects its
representation. This adds assurance over the first method, since it is unlikely that all functionality
can be exercised without some knowledge of the de-compiled implementation.

246 The analog of this activity for hardware implementations is much more difficult to express, since
the process of creating the hardware implementation is, unlike compilation, not as easily
reversible, and there is generally not a notion of “stepping through hardware”, although some
provision may have been made through the installation of test pins and special logic. Such
analysis is possible using specialized procedures and test equipment, but the cost (in terms of
time, expertise required, and expense of obtaining the equipment) of performing the analysis
outweighs the potential gains from such an analysis at this time.

247 Some forms of the implementation representation may require additional information because
they introduce significant barriers to understanding and analysis. Examples include “shrouded”
source code or source code that has been obfuscated in other ways such that it prevents
understanding and/or analysis. These forms of implementation representation typically result
from by taking a version of the implementation representation that is used by the TOE
developers and running a shrouding or obfuscation program on it. While the shrouded
representation is what is compiled and may be “closer” to the implementation (in terms of
structure) than the original, un-shrouded representation, supplying such a version may cause
significantly more time to be spent in analysis tasks involving the representation. When such
forms of representation are created, the components require details on the shrouding
tools/algorithms used so that the un-shrouded representation can be supplied, and the additional
information can be used to gain confidence that the shrouding process does not compromise any
security mechanisms.

248 The implementation representation is transformed into the actual implementation. For hardware,
this may involve creating integrated circuits from schematics or hardware description languages.

 150

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

For software, this may involve creating object code modules from source code files. It may even
be the source code itself in the case where the language is interpreted. An external representation
of the implementation is the term used to describe discrete units of the implementation are
packaged once they are transformed from the implementation representation.

249 For software this is the entity (for example, a file) that is output by the compiler that executes
directly on the hardware, or the entity that is input by the interpreter. The key concept is that the
external representation of the implementation is the actual implementation that will perform the
functions of the TSF.

250 The components in this family are levelled based on the amount of information relating to the
implementation that is supplied, and the confidence that is obtained that the actual
implementation reflects the security design of the TSF. The ADV_IMP.1 component requires the
complete implementation representation to be supplied, and any additional information needed to
accurately interpret the implementation representation. At ADV_IMP.2, tools must be supplied
and used to provide assurance that at the implementation level, the security mechanisms appear
to be security preserving. At ADV_IMP.3, information and tools must be provided so that
analysis can be performed verifying that the software implementation accurately reflect the
SFRs.

Dependencies for ADV_IMP_EXP.3
 ADV_LLD_EXP.3 Complete Low-Level Design

 ADV_RCR_EXP.1 Subsystem Correspondence Demonstration

 ALC_TAT.1 Well-defined Development Tools

E.8 Rationale for ADV_INT_EXP

TSF Internals (ADV_INT)

Objectives

251 This family addresses the internal structure of the software TSF. Requirements are presented for
modular decomposition, layering, principle of least privilege, and minimisation of the amount of
non-TSP-enforcing functionality within the TSF. When used effectively, modularity and layering
provide many assurance benefits including data hiding and abstraction. These requirements,
when applied to the internal structure of the TSF, should result in improvements that aid both the
developer and the evaluator in understanding the TSF, and also provides the basis for designing
and evaluating test suites. Further, improving understandability of the TSF should assist the
developer in simplifying its maintainability. The principal goal achieved by inclusion of the
requirements from this class in a PP/ST is understandability of the TSF.

 151

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

252 Modular design aids in achieving understandability by clarifying what dependencies a module
has on other modules (coupling), by including in a module only tasks that are strongly related to
each other (cohesion), and by illuminating the design of a module by using internal structuring
and reduced complexity. The use of modular design reduces the interdependence between
elements of the TSF and thus reduces the risk that a change or error in one module will have
effects throughout the TOE. Its use enhances clarity of design and provides for increased
assurance that unexpected effects do not occur. Additional desirable properties of modular
decomposition are a reduction in the amount of redundant or unneeded code.

253 Another key component to reducing complexity is the use of coding standards. Coding standards
are used as a reference to ensure programmers generate code that can be easily understood by
individuals (e.g., code maintainers, code reviewers, evaluators) that are not intimately familiar
with the nuances of the functions performed by the code. For example, coding standards ensure
that meaningful names are given to variables and data structures, the code has a structure that is
similar to code developed by other programmers, loops used in the code are understandable (e.g.,
leaving a loop to another section of code and returning is undesirable), the use of pointers to
variables/data structures is straightforward, and the code is suitably commented (inline and/or by
a preamble). The use of coding standards helps to eliminate errors in code development and
maintenance, and assists the development team in performing code walk-throughs. Some aspects
of coding standards are specific to a given program language (e.g., the C language may have a
different standard from the Java language or assembly level code). It is expected that the coding
standards be appropriately followed for the employed programming language(s). The
requirements in this component allow for exceptions to the adherence of coding standards that
may be necessary for reasons of performance, or some other factors, but these deviations must be
justified (on a per module basis) as to why they are necessary. Any justification provided must
address why the deviation does not unduly introduce complexity into the module, since
ultimately, the goal of adhering to coding standards is to improve clarity.

254 The use of layering to separate levels of abstraction and minimise circular dependencies further
enables a better understanding of the TSF, providing more assurance that the TOE security
functional requirements are accurately and completely instantiated in the implementation.

255 Minimising the amount of functionality in the TSF allows the evaluator as well as the developer
to focus only on that functionality which is necessary for TSP enforcement, contributing further
to understandability and further lowering the likelihood of design or implementation errors.

256 The incorporation of modular decomposition, layering and minimization into the design and
implementation process must be accompanied by sound software engineering considerations. A
practical, useful software system will usually entail some undesirable coupling among modules,
some modules that include loosely-related functions, and some subtlety or complexity in a
module’s design. These deviations from the ideals of modular decomposition are often deemed
necessary to achieve some goal or constraint, be it related to performance, compatibility, future
planned functionality, or some other factors, and may be acceptable, based on the developer’s
justification for them. In applying the requirements of this class, due consideration must be given
to sound software engineering principles; however, the overall objective of achieving
understandability must be achieved.

257 Design complexity minimisation is a key characteristic of a reference validation mechanism, the

 152

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

purpose of which is to arrive at a TSF that is easily understood so that it can be completely
analysed. (There are other important characteristics of a reference validation mechanism, such as
TSF self-protection and TSP non-bypassability; these other characteristics are covered by
requirements from other classes.)

Component levelling

258 The components in this family are levelled on the basis of the amount of structure and
minimisation required. Partial modular decomposition at ADV_INT.1 places requirements for
modular decomposition on only selected parts of the TSF. At the next level, the requirements for
modular decomposition are placed on the entire TSF, and the requirements for dealing with
duplicate or unused code are strengthened. Layering and minimization are then introduced in the
next two higher components.

Application notes

259 Several of the elements within the components for this family refer to the software architectural
description. The software architectural description is at a similar level of abstraction as the low-
level design, in that it is concerned with the modules of the TSF. Whereas the low-level design
describes the design of the modules of the TSF, the purpose of the software architectural
description is to provide evidence of modular decomposition, layering, and minimisation of
complexity of the TSF, as applicable. Both the low-level design and the implementation
representation are required to be in compliance with the software architectural description, to
provide assurance that these TSF representations possess the required modular decomposition,
layering, and minimisation of complexity.

260 The modules identified in the software architectural description are the same as the modules
identified in the low-level design.

Terms, definitions and background

261 The following terms are used in the requirements for software internal structuring. Some of these
are derived from the Institute of Electrical and Electronics Engineers Glossary of software
engineering terminology, IEEE Std 610.12-1990.

262 modular decomposition: the process of breaking a system into components to facilitate design
and development.

263 cohesion (also called module strength): the manner and degree to which the tasks performed by a
single software module are related to one another; types of cohesion include coincidental,
communicational, functional, logical, sequential, and temporal. These types of cohesion are
characterised below, listed in the order of decreasing desirability.

264 functional cohesion: a module with this characteristic performs activities related to a single
purpose. A functionally cohesive module transforms a single type of input into a single type of
output, such as a stack manager or a queue manager.

265 sequential cohesion: a module with this characteristic contains functions each of whose output is

 153

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

input for the following function in the module. An example of a sequentially cohesive module is
one that contains the functions to write audit records and to maintain a running count of the
accumulated number of audit violations of a specified type.

266 communicational cohesion: a module with this characteristic contains functions that produce
output for, or use output from, other functions within the module. An example of a
communicationally cohesive module is an access check module that includes mandatory,
discretionary, and capability checks.

267 temporal cohesion: a module with this characteristic contains functions that need to be executed
at about the same time. Examples of temporally cohesive modules include initialization,
recovery, and shutdown modules.

268 logical (or procedural) cohesion: a module with this characteristic performs similar activities on
different data structures. A module exhibits logical cohesion if its functions perform related, but
different, operations on different inputs.

269 coincidental cohesion: a module with this characteristic performs unrelated, or loosely related
activities.

270 coupling: the manner and degree of interdependence between software modules; types of
coupling include call, common and content coupling. These types of coupling are characterised
below, listed in the order of decreasing desirability.

271 call: two modules are call coupled if they communicate strictly through the use of their
documented function calls; examples of call coupling are data, stamp, and control, which are
defined below.

- data: two modules are data coupled if they communicate strictly through the use of call
parameters that represent single data items.

- stamp: two modules are stamp coupled if they communicate through the use of call
parameters that comprise multiple fields or that have meaningful internal structures.

- control: two modules are control coupled if one passes information that is intended to
influence the internal logic of the other.

272 common: two modules are common coupled if they share a common data area or a common
system resource. Global variables indicate that modules using those global variables are common
coupled11.

273 Common coupling through global variables is generally allowed, but only to a limited degree.
For example, variables that are placed into a global area, but are used by only a single module,
are inappropriately placed, and should be removed. Other factors that need to be considered in
assessing the suitability of global variables are:

The number of modules that modify a global variable: In general, only a single module
should be allocated the responsibility for controlling the contents of a global variable, but

11It can be argued that modules sharing definitions, such as data structure definitions, are common
coupled. However, for the purposes of this analysis, shared definitions are considered acceptable, but are
subject to the cohesion analysis.

 154

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

there may be situations in which a second module may share that responsibility; in such a
case, sufficient justification must be provided. It is unacceptable for this responsibility to
be shared by more than two modules. (In making this assessment, care should be given to
determining the module actually responsible for the contents of the variable; for example,
if a single routine is used to modify the variable, but that routine simply performs the
modification requested by its caller, it is the calling module that is responsible, and there
may be more than one such module). Further, as part of the complexity determination, if
two modules are responsible for the contents of a global variable, there should be clear
indications of how the modifications are coordinated between them.

The number of modules that reference a global variable: Although there is generally no
limit on the number of modules that reference a global variable, cases in which many
modules make such a reference should be examined for validity and necessity.

274 content: two modules are content coupled if one can make direct reference to the internals of the
other (e.g. modifying code of, or referencing labels internal to, the other module). The result is
that some or all of the content of one module are effectively included in the other. Content
coupling can be thought of as using unadvertised module interfaces; this is in contrast to call
coupling, which uses only advertised module interfaces.

275 call tree: a diagram that identifies the modules in a system and shows which modules call one
another. All the modules named in a call tree that originates with (i.e., is rooted by) a specific
module are the modules that directly or indirectly implement the functions of the originating
module.

276 software engineering: the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of engineering to
software. As with engineering practices in general, some amount of judgement must be used in
applying engineering principles. Many factors affect choices, not just the application of measures
of modular decomposition, layering, and minimisation. For example, a developer may design a
system with future applications in mind that will not be implemented initially. The developer
may choose to include some logic to handle these future applications without fully implementing
them; further, the developer may include some calls to as-yet unimplemented modules, leaving
call stubs. The developer’s justification for such deviations from well-structured programs will
have to be assessed using judgement, as well as the application of good software engineering
discipline.

277 complexity: this is a measure of how difficult software is to understand, and thus to analyse, test,
and maintain. Reducing complexity is the ultimate goal for using modular decomposition,
layering and minimization. Controlling coupling and cohesion contributes significantly to this
goal.

278 A good deal of effort in the software engineering field has been expended in attempting to
develop metrics to measure the complexity of source code. Most of these metrics use easily
computed properties of the source code, such as the number of operators and operands, the
complexity of the control flow graph (cyclomatic complexity), the number of lines of source
code, the ratio of comments to executable code, and similar measures. Coding standards have
been found to be a useful tool in generating code that is more readily understood.

 155

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

279 This family calls for the evaluator to perform a complexity analysis in all components. The
developer may be required to support the evaluation team’s activities in this area by providing a
form of the implementation representation that allows complexity analysis tools to be used to
measure some of the properties of the source code.

280 layering: the design software such that separate groups of modules (the layers) are hierarchically
organized to have separate responsibilities such that one layer depends only on layers below it in
the hierarchy for services, and provides its services only to the layers above it. Strict layering
adds the constraint that each layer receives services only from the layer immediately beneath it,
and provides services only to the layer immediately above it.

Mininization of Complexity (ADV_INT_EXP.4)

Objectives

281 This component specifies requirements that are intended to ensure the entire TSF is structured
and implemented in a way that facilities an ease of understanding. A conformant TSF will be
simple enough to analyse such that it can be fully understood, with the accompanying design
information, by the evaluation team.

Application notes

Editor Note: Some of this introductory matter might be more appropriate in the
methodology.

282 This component requires that the reference monitor property “simple enough to be analysed” is
fully addressed. When this component is combined with the functional requirements
FPT_RVM.1 and FPT_SEP.3, the reference monitor concept would be fully realised.

283 The component requires the use of layering in the architecture to aide in understanding of the
TSF. The layers of the design are constructed such that the lowest layer in the design provides
services for the next layer in the hierarchy. While exceptions are allowed for a lower layer in the
hierarchy to initiate a call to a higher layer in the hierarchy, they are discouraged and require a
strong justification that these types of interactions do not result in circular dependencies or pose
potential recursion issues. The primary purpose of a layer architecture is that each layer can be
analysed and understood without knowing the workings of the adjacent layers. This allows the
TSF architecture to be decomposed into more manageable pieces for analysis by the evaluation
team and the developer’s staff. Strict layering is not required to satisfy this component.

284 This component addresses the minimization of complexity not only through structure, but also by
the elimination of code that is not contributing to the enforcement of the TOE’s defined security
policies. This requires the removal of unused or “dead-code”, redundant code, and code (e.g.,
functions, modules, macros) that may be reachable but does not play a role a role in TSP
enforcement, from the final implementation (e.g., binary executable). For example, code that

 156

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

exists in the implementation representation, but based upon compiler options does not get
compiled into the executable would not have to be removed (e.g., debug code, hardware platform
specific code); however, information must be provided that makes it clear what code in the
implementation representation will exist in the resulting implementation. Exceptions of unused
and redundant code existence are allowed as long as there is a suitable justification. A suitable
justification for unused code may be that future product functionality has begun to be staged into
the development, but is not complete. Redundant code is more difficult and is subjective.
Functions that are identical would require a strong argument for their inclusion. Functions that
perform a similar purpose, but differ slightly in their implementation require engineering
judgement to determine the legitimacy of their existence. If the functions are easily understood
and combining them into a single function would introduce complexity or undesirable
interactions than it may be better to keep them as separate functions. On the other hand, if a
function has been copied by a programmer so they have “ownership” of the code and need not be
concerned with potential modifications to the original function would not be acceptable. Another
concern is a block of code that is simply copied and repeated x number of times in a function
(not referring to loops). Judgement must be exercised as to whether a function should be
constructed to provide the purpose. The use of macros is not a concern, even though once
compiled the macro is expanded where it is called, since the “source” of the macro lives in one
location and if modified the results will be the same in all instances, which cannot be easily
assured when multiple lines of code are copied and placed throughout a module.

Dependencies for ADV_INT_EXP.4
 ADV_IMP_EXP.1 Implementation Representation of the TSF

 ADV_LLD_EXP.3 Complete Low-Level Design

E.9 Rationale for ADV_LLD_EXP

Low-level Design (ADV_LLD)

Editor Note: As with ADV_INT, this currently is written focusing on software. The hardware
issue is problematic and must be addressed, although it is not obvious that it
can be done in the context of this class. The types of activities and
characteristics one wishes to see and to describe in software vs. hardware are
arguably different, and trying to shoehorn both into a single class will either
lead to something that is unmanageable, or slight one of the two areas. We
suggest that this issue be seriously discussed at some point, coming up with
interim recommendations on how current evaluations are to proceed, as well as
a plan for address such issues in the longer term.

 157

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Objectives

285 The low-level design of a TOE provides a description of the internal workings of the TSF in
terms of modules, global data, and their interrelationships. The low-level design is a description
of how the TSF is implemented to perform its functions, rather than what the TSF provides as is
specified in the FSP. The low-level design is closely tied to the actual implementation of the
TSF, unlike the high-level design, which could be implementation-independent. The primary
goal of the low-level design is an aid in understanding the implementation of the TSF, both by
reviewing the text of the low-level design as well as a guide when examining the implementation
representation (source code).

Component levelling

286 The components in this family are levelled on the basis of the entity that determines whether a
module is security enforcing or security supporting; the degree of detail provided for the modules
of the TSF; and degree of formalism required in the presentation.

Application note

287 A module is generally a relatively small architectural unit that can be characterized in terms of
the properties discussed in ADV_INT. When both ADV_LLD requirements and ADV_INT
requirements are present in a PP or ST, a “module” in terms in of the ADV_LLD requirements
refers to the same entity as a “module” for the ADV_INT requirements.

288 A security-enforcing module is a module that directly implements a security functional
requirement (SFR) in the ST (with the exception of FPT_SEP and FPT_RVM; see discussion
below for these requirements). Such modules will typically implement a security-enforcing
TSFI, but some functionality expressed in an SFR (for example, audit and object re-use
functionality) may not be directly tied to a single TSFI. Modules that are not security enforcing
must support the FPT_SEP and FPT_RVM requirements, and are termed security supporting.

289 It is important to note that the determination of what “directly implements” means is somewhat
subjective. In the most narrow sense of the term, it could be interpreted to mean the one or two
lines of code that actually perform a comparison, zeroing operation, etc. that implements a
requirement. A broader interpretation might be that it includes the module that is invoked in
response to a security-enforcing TSFI, and all modules that may be invoked in turn by that
module (and so on until the completion of the call). Neither of these interpretations is particularly
satisfying, since the narrowness of the first interpretation may lead to important modules being
incorrectly categorized as security supporting, while the second leads to modules that are
actually not security enforcing being classified as such.

290 Because of this subjectivity, at ADV_LLD.1 the developer is responsible for determining which
modules are security supporting and which are security enforcing, supplying detailed information
on modules designated security enforcing while supplying less detailed information on security-
supporting modules. At ADV_LLD.2, the developer provides detailed documentation on all
modules in security enforcing subsystems, thereby providing the evaluation entity the means to

 158

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

determine which modules are security enforcing (and thus need closer scrutiny) and which are
security supporting. At ADV_LLD.3 and ADV_LLD.4, all modules are described in detail,
allowing the evaluator to make a comprehensive determination with detailed information as to
whether a module is security enforcing or security supporting.

291 A detailed description of a module in the low-level design should be such that one could create
an implementation of the module from the low-level design, and the resulting implementation
would be 1) identical to the actual TSF implementation in terms of the interfaces presented and
used by the module, and 2) algorithmically identical to the TSF module. For instance, the low-
level design may describe a block of processing that is looped over a number of times. The actual
implementation may be a for loop or a do loop, both of which could be used to implement the
algorithm. Conversely, if a module’s actual implementation performed a bubble sort, it would be
inadequate for the low-level design to specify that the module “performed a sort”; it would have
to describe the type of sort that was being performed.

292 Modules not described in detail should be identified and enough information should be supplied
so that 1) the evaluation team can determine whether such modules are security supporting or
security enforcing, and 2) the evaluation team has the information necessary to complete the
analysis required by ADV_INT requirements if components from that family are included in the
PP or ST.

293 In the low-level design, modules are described in detail in terms of the interfaces they present;
the interfaces they use; global data they access; the function they provide (the purpose); and an
algorithmic description of how they provide that function.

294 The interfaces presented by a module are those interfaces used by other modules to invoke the
functionality provided. Interfaces are described in terms of how they are invoked, and any values
that are returned. This description would include a list of parameters, and descriptions of these
parameters. If a parameter were expected to take on a set of values (e.g., a “flag” parameter), the
complete set of values the parameter could take on that would have an effect on module
processing would be specified. Likewise, parameters representing data structures are described
such that each field of the data structure is identified and described. Note that different
programming languages may have additional “interfaces” that would be non-obvious; an
example would be operator/function overloading in C++. This “implicit interface” in the class
description would also be described as part of the low-level design. Note that although a module
could present only one interface, it is more common that a module presents a small set of related
interfaces.

295 By contrast, interfaces used by a module must be identified such that it can be determined which
module is being invoked by the module being described. It must also be clear from the low-level
design the algorithmic reason the invoking module is being called. For instance, if Module A is
being described, and it uses Module B’s bubble sort routine, an inadequate algorithmic
description would be “Module A invokes the double_bubble() interface in Module B to perform
a bubble sort.” An adequate algorithmic description would be “Module A invokes the
double_bubble routine with the list of access control entries; double_bubble() will return the
entries sorted first on the username, then on the access_allowed field according the following
rules...” The detailed description of a module in the low-level design must provide enough detail
so that it is clear what effects Module A is expecting from the bubble sort interface. Note that

 159

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

one method of presenting these called interfaces is via a call tree, and then the algorithmic
description can be included in the algorithmic description of the called module.

296 If the implementation makes use of global data, the low-level design must describe the global
data, and in the algorithmic descriptions of the modules indicate how the specific global data are
used by the module. Global data are identified and described much like parameters of an
interface.

297 The purpose of a module should be described indicating what function the module is providing.
It should be sufficient so that the reader could get a general idea of what the module’s function is
in the architecture.

298 As discussed previously, the algorithmic description of the module should describe in an
algorithmic fashion the implementation of the module. This can be done in pseudo-code, through
flow charts, or (at ADV_LLD.1, .2, or .3) informal text. It discusses how the parameters to the
interface, global data, and called functions are used to accomplish the module’s function. It notes
changes to global data, system state, and return values produced by the module. It is at the level
of detail that an implementation could be derived that would be very similar to the actual
implementation of the system.

299 It should be noted that source code does not meet the low-level design requirements. Although
the low-level design describes the implementation, it is not the implementation. Further, the
comments surrounding the source code are not sufficient low-level design if delivered
interspersed in the source code. The low-level design must stand on its own, and not depend on
source code to provide details that must be provided in the low level design (whether
intentionally or unintentionally). However, if the comments were extracted by some automated
or manual process to produce the low-level design (independent of the source code statements),
they could be found to be acceptable if they met all of the appropriate LLD requirements.

300 The ADV_LLD.*.2E elements within this family define a requirement that the evaluator
determine that the low-level design is an accurate and complete instantiation of the TOE security
functional requirements. This provides a direct correspondence between the TOE security
functional requirements and the low-level design, in addition to the pairwise correspondences
required by the ADV_RCR family. Although the evaluator may use the evidence provided in
ADV_RCR as an input to making this determination, ADV_RCR cannot be the basis for a
positive finding in this area. The requirement for completeness is intended to be relative to the
level of abstraction of the low-level design. Note that for this element, FPT_SEP and FPT_RVM
are not explicitly analyzed; the analysis for those requirements is done as part of the activity for
the ADV_ARC family of components.

301 In the context of the level of formality of the low-level design, informal and semiformal are
considered to be hierarchical in nature. Thus, ADV_LLD.2.1C may also be met with either a
semiformal or formal low-level design, and ADV_LLD.2.1C may also be met with a formal low-
level design.

Dependencies for ADV_ LLD_EXP.4
 ADV_HLD_EXP.3 Complete High-Level Design

 ADV_IMP_EXP.1 Implementation Representation of the TSF

 160

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

E.10 Rationale for ADV_RCR_EXP

Representation Correspondence (ADV_RCR)

Objectives

302 The correspondence between the various TSF representations (i.e. security functional
requirements, TSFIs specified in the functional specification, high-level design, low-level design,
implementation representation) addresses the correct and complete instantiation of the
requirements to the least abstract TSF representation provided. The developer provides a
correspondence or mapping that provides the evaluators with a roadmap to use in their evaluation
activities. The evaluators use the evidence provided in this family along with the evidence
required in other families to determine if an accurate and complete step-wise refinement has been
achieved.

Component levelling

303 The components in this family are levelled on the basis of the levels of abstraction of the TSF
that is required, with the highest component in this family requiring a formal correspondence
proof that the SFRs are completely and accurately implemented in the TSFI.

Application note

304 The developer must provide a mapping or correspondence that indicates the how the SFRs are
realised in the TSFI. Some of the security relevant functionality specified in the SFRs may not be
present in the functional specification’s presentation of the TSFIs (e.g., residual information
protection may not be discussed in the functional specification for a given interface even though
using that interface may involve the allocation of a resource that has been zeroized, domain
separation, reference validation). The developer is still expected to map these types of SFRs to
the appropriate TSFIs.

305 The developer is expected to map all the TSFI to a corresponding subsystem that is described in
the high level design. All of the modules presented in the low-level design are required to be
mapped to its corresponding subsystem as well as the implementation representation that realises
the modules.

306 A formal proof of correspondence is required in ADV_RCR.3 to demonstrate the SFRs are
completely and accurately realised in the TSFIs. This may require the SFRs to be restated in a
language that can be used by a tool to formally specify the TSFI or to demonstrate the TSFI
(which also may have to be transformed into a formal methods language) fully and accurately
implement the SFRs. In these cases, any tools used to demonstrate correspondence or to generate
formally specified SFRs or TSFI need to be examined to ensure the correctness of their

 161

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

application.

Dependencies for ADV_ RCR_EXP.3
 ADV_FSP_EXP.6 Formal Functional Specification with Indirect Error
Mapping

 ADV_HLD_EXP.1 Descriptive High-Level Design

 ADV_LLD_EXP.1 Descriptive High-Level Design

 ADV_IMP_EXP.1 Implementation Representation of the TSF

E.10 Rationale for ADV_SPM_EXP

Security Policy Modeling (ADV_SPM)

Editor Note: The updates in this section are derived only from the Final Interpretations. In
discussions with the people who are frighteningly familiar with policy modeling,
it became apparent that their use of “semiformal” refers to expressing things
formally and then proving their soundness, completeness, etc manually.

Objectives

307 It is the objective of this family to provide additional assurance that the security functions in the
functional specification enforce the policies in the TSP. This is accomplished via the
development of a security policy model of the policies of the TSP, and establishing a
correspondence between the functional specification and the security policy model of these
policies of the TSP.

Component levelling

308 The components in this family are levelled on the basis of the degree of formality required of the
TSP model, and the degree of formality required of the correspondence between the TSP model
and the functional specification.

Application note

309 A model is merely an abstraction or simplification of reality, the purpose of which is to capture
key aspects of the behaviour of that reality. An IT security policy is set of restrictions and
properties that specify how information and computing resources are prevented from being used

 162

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

to violate an organizational security policy, accompanied by a persuasive set of engineering
arguments showing that these restrictions and properties play a key role in the enforcement of the
organizational security policy. A security policy model is a precise, possibly formal, presentation
of the security policy enforced by the IT system; it identifies the set of rules and practices that
regulates how a system manages, protects, and otherwise controls the system resources.

310 The term security policy has traditionally been associated with only access or information flow
control policies. The CC requirements bear this out: only the requirements for access and
information flow control contain assignments to explicitly describe the rules and coverage of
these policies. However, a TSP is not limited to access control or information control policies;
there are also audit policies, identification policies, authentication policies, encryption policies,
management policies, and any other security policies that are enforced by the TOE, as described
in the PP/ST. The rules of these policies are not explicitly stated in any requirement; they are
implicit in the sense that one must consider all of the related requirement components (e.g. those
of the FAU family to derive the implicit audit policy).

311 An informal model is merely a description of these policies. Therefore, any security policy can
be stated informally. The only difference between an informal model and a semiformal one is
format or presentation (rather than content); therefore, any informal model can be written in a
semiformal style.

312 Some policies can be modelled formally, while others cannot. ADV_SPM.3.2D and
ADV_SPM.3.3D contain assignments for identifying the policies that are semiformally and
formally modelled. Formal TSP models have traditionally represented only subsets of those
policies (i.e. the access control and information control policies), because modeling certain
policies is currently beyond the state of the art. The current state of the art determines the
policies that can be formally modeled, and the PP/ST author should identify specific functions
and associated policies that can be, and thus are required to be, formally modeled.

313 The level of formality of the TSP model and of the functional specification determine the
necessary level of formality of the correspondence between them: the correspondence is at the
same level of formality as the model and the functional specification if they are of the same level
of formality, or at the level of the less-formal one if they are different.

314 Because informal, semiformal and formal are considered to be hierarchical in nature,
ADV_SPM.1 may also be met with either a semiformal or formal TSP model, and
ADV_SPM.2.1C may also be met with a formal TSP model. Furthermore, ADV_SPM.2.4C and
ADV_SPM.3.4C may be met with a formal proof of correspondence. Finally, in the absence of
any requirements on its level of formality, a demonstration of correspondence may be informal,
semiformal or formal.

315 For any security policy where formal models are not possible, the policy must be provided in
semiformal form. If none of the TOE’s security policies can be formally modelled, ADV_SPM.3
cannot be met.

316 For each of the components within this family, there is a requirement to describe the rules and
characteristics of applicable policies of the TSP in the TSP model and to ensure that the TSP
model satisfies the corresponding policies of the TSP. The “rules” and “characteristics” of a TSP
model are intended to allow flexibility in the type of model that may be developed (e.g. state

 163

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

transition, non-interference). The security characteristics are the properties that must hold for
security to be maintained (e.g., definitions of secure values for TSF data); the description of
security rules are how the TOE enforces the values that the security-relevant attributes can take.

317 For example, an authentication policy that uses passwords would include a definition of the
minimum acceptable password length in its description within the model. The security
characteristics would include the minimum password length; the security rules would describe
the TOE’s enforcement of that length (should the user attempt to set a password of lesser length,
for example).

318 Alternatively, rules may be represented as “properties” (e.g. simple security property) and
characteristics may be represented as definitions such as “initial state”, “secure state”, “subjects”
and “objects”.

319 The dependency of some functional requirements upon ADV_SPM implies a need for certain
contents to be in the model:

- FMT_MTD.3 and FCS_CKM.* require that the model defines secure values for the
attributes used in the enforcement of policies that are identified in FMT_MSA.1, which is
a dependency. The model would make clear how these values (or combinations thereof)
define the security of the TOE.

- FMT_MTD.3 requires that the model defines secure values for the TSF data that are
identified in FMT_MTD.1, which is a dependency. The model would make clear how
these values (or combinations thereof) define the security of the TOE.

- FPT_FLS.1, FPT_RCV.*, and (indirectly) FRU_FLT.* all require that a secure state be
identified, defined, characterized or described in the model. In cases where the model is
not state-based, the secure state of the TOE can be defined in terms of the properties that
must hold and the values that must be set. This covers every security policy.

Editor Note: The CCIMB needs to re-examine the wording of the functional requirements
identified in the preceding paragraph. Allegedly the model need not be state-
based, but the functional requirements currently read as if the model is state-
based. The functional requirements might have to be reworded to be less state-
centric; FMT_MSA.1 needs to be rewritten to allow assignment of all policies,
rather than only access control and information flow control.

320 The purpose of the security policy model rationale is to verify that the security functional
requirements are consistent with the security policies. It should explain how the effect of each
requirement upon each policy was measured and provide a justification for any requirement that
is not mapped to any policy.

 164

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Dependencies for ADV_SPM_EXP.3
 ADV_FSP_EXP.1 Descriptive Functional Specification

 165

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Appendix F – Example TOE Scenario
321 For the configuration data and TOE implementation components, Figure F-1 provides a notional

illustration of an acceptable scenario for their generation, movement and use, as well as the
allocation of components to the TSF and TOE.

322 For simplicity and generality, the entity that develops or modifies a TOE component is called a
“TOE developer,” even if some of the development is performed by an entity that is an integrator
or customer in some other scenario. If a component (e.g., a new hardware dependent module) is
to be integrated into the TOE, then the component, as well as the combination of that component
with the rest of the TOE will need to have been evaluated. Also, implementation components
will always need to be accepted by the TOE trusted delivery mechanism. For example, if an
“integrator,” receives a TOE from the original developer and then modifies certain TOE
components as part of the integration of the SK into a larger component/system – conceptually
creating a new TOE -- evaluation or re-evaluation of the new TOE must occur. It is beyond the
scope of this protection profile to specify requirements that are specific to a partial re-evaluation
of the new TOE.

 166

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 0.621 - 1 July 2004

Trusted Delivery
“Seal” Generation

TOE Developer IT Environment

Target of Evaluation

Legend
Optional Items:

Note: At least one set of {Configuration Tool, Configuration Data}
is required, the other is optional.

Load
Function

Configuration
Data

Configuration
Tool

Trusted Delivery
Seal Verification

Load
Function

TSF

Boot Function

Runtime
Software

Components

Configuration
Data

TOE Customer IT Environment

Target of Evaluation

Hardware

Initialization
SW Components

Initialization Function

Configuration
Data

Configuration
Data

Configuration
Tool

Software
Components

Hardware

Software
Components

TSF

Boot & Init Components
Configuration Tool

Figure F-1 Example TOE Scenario

 167

	Introduction
	Identification
	Overview
	TOE Environment Defining Factors
	Value of Resources
	Authorization of Entities

	Selection of Appropriate Robustness Levels

	Mutual Recognition of Common Criteria Certificates
	Conventions
	Explicit: Management of TSF Data (for Configuration Data) (F
	Explicit: Management of TSF Data (for General TSF Data) (FMT
	5.4.1.1 Explicit: Management of Security Functions Behavior

	Glossary of Terms
	Document Organization

	Target of Evaluation (TOE) Description
	Product Type
	Separation Kernel Concepts
	Trusted Delivery
	Trusted Recovery
	Evaluation Considerations
	General TOE Functionality
	Cryptographic Requirements
	TOE Operational Environment

	TOE Security Environment
	Use of High Robustness
	Threat Agent Characterization
	Threats
	Security Policy
	Security Usage Assumptions

	Security Objectives
	TOE Security Objectives
	Environment Security Objectives

	TOE Security Functional Requirement
	Security Audit (FAU)
	Security Audit Automatic Response (FAU_ARP)
	Security Alarms (FAU_ARP.1)

	Security Audit Data Generation (FAU_GEN)
	Audit Data Generation (FAU_GEN.1)

	Security Audit Event Selection (FAU_SEL)
	Selective Audit (FAU_SEL.1)

	Cryptographic Support (FCS)
	Explicit: Baseline Cryptographic Module (FCS_BCM_EXP)
	Explicit: Baseline Cryptographic Module (FCS_BCM_EXP.1)

	User Data Protection (FDP)
	Information Flow Control Policy (FDP_IFC)
	Complete Information Flow Control (for Information Flow Cont
	Complete Information Flow Control (for Partition Flow Contro

	Information Flow Control Functions (FDP_IFF)
	Simple Security Attributes (FDP_IFF.1)
	Partial Elimination of Illicit Information Flows (FDP_IFF.4)

	Residual Information Protection (FDP_RIP)
	Explicit: Full Residual Information Protection (FDP_RIP_EXP.

	Identification and Authentication (FIA)
	Explicit: Subject and Resource Attribute Definition (FIA_ATD
	Subject and Resource Attribute Binding (FIA_USB)
	Explicit: Subject and Resource Attribute Binding (FIA_USB_E

	Security Management (FMT)
	Management of Security Attributes (FMT_MSA)
	Explicit: Management of Security Attributes (FMT_MSA_EXP.1)

	Management of TSF Data (FMT_MTD)
	Explicit: Management of TSF Data (for Modification of Flow
	Secure TSF Data (FMT_MTD.3)

	Protection of the TSF (FPT)
	Underlying Abstract Machine Test (FPT_AMT)
	Abstract Machine Testing (FPT_AMT.1)

	Explicit: Establishment of Secure State (FPT_ESS)
	Explicit: Establishment of Secure State (FPT_ESS_EXP.1)

	Application Note: The phrase “upon activation of any partit
	Fail Secure (FPT_FLS)
	Failure with Preservation of Secure State (FPT_FLS.1)

	Integrity of Exported TSF Data (FPT_ITI)
	Explicit: Inter-TSF Detection of Modification (FPT_ITI_EXP.1

	Trusted Recovery (FPT_RCV)
	Automated Recovery (FPT_RCV.2)
	Function Recovery (FPT_RCV.4)

	Reference Mediation (FPT_RVM)
	Non-Bypassability of the TSP (FPT_RVM.1)

	Domain Separation (FPT_SEP)
	Complete Reference Monitor (FPT_SEP.3)

	Time Stamps (FPT_STM)
	Reliable Time Stamp (FPT_STM.1)

	TSF Self Test (FPT_TST)
	Explicit: TSF Testing (FPT_TST_EXP.1)

	Resource Utilization (FRU)
	Resource Allocation (FRU_RSA)
	Explicit: Maximum Quotas (for System Memory) (FRU_RSA_EXP.1
	Explicit: Maximum Quotas (for Processing Time) (FRU_RSA_EXP

	End Notes

	TOE Security Assurance Requirements
	Configuration Management (ACM)
	CM Automation (ACM_AUT)
	Complete CM Automation (ACM_AUT.2)

	CM Capabilities (ACM_CAP)
	Advanced Support (ACM_CAP.5)

	CM Scope (ACM_SCP)
	Development Tools CM Coverage (ACM_SCP.3)

	Delivery and Operation (ADO)
	Delivery (ADO_DEL)
	Explicit: Detection of Modification (ADO_DEL_EXP.2)

	Installation, Generation and Start-Up (ADO_IGS)
	Installation, Generation and Start-Up Procedures (ADO_IGS.1)

	Development (ADV)
	Architectural Design (ADV_ARC)
	Explicit: Architectural Design (ADV_ARC_EXP.1)

	Composition Information (ADV_CMP)
	Explicit: Detailed Composition Information (ADV_CMP_EXP.2)

	Functional Specification (ADV_FSP)
	Explicit: Formal Functional Specification With Indirect Erro

	Development Requirements for Hardware
	TBD

	High-Level Design (ADV_HLD)
	Explicit: Semiformal High-Level Design (ADV_HLD_EXP.4)

	Information Availability (ADV_IFA)
	Explicit: Availability of Interface Information (ADV_IFA_EXP

	Implementation Representation (ADV_IMP)
	Explicit: Verified Implementation of the TSF (ADV_IMP_EXP.3)

	Trusted Initialization (ADV_INI)
	Explicit: Trusted Initialization (ADV_INI_EXP.1

	TSF Internals (ADV_INT)
	Explicit: Minimization of Complexity (ADV_INT_EXP.4)

	Low-level Design (ADV_LLD)
	Explicit: Semi-Formal Low-Level Design (ADV_LLD_EXP.4)

	Representation Correspondence (ADV_RCR)
	Explicit: Formal Correspondence Demonstration (ADV_RCR_EXP.3

	Security Policy Modeling (ADV_SPM)
	Explicit: Formal TOE Security Policy Model (ADV_SPM_EXP.3)

	Guidance Documents (AGD)
	Administrator Guidance (AGD_ADM)
	Explicit: Administrator Guidance (AGD_ADM_EXP.1)

	User Guidance (AGD_USR)
	User Guidance (AGD_USR.1)

	Life Cycle Support (ALC)
	Development Security (ALC_DVS)
	Sufficiency of Security Measures (ALC_DVS.2)

	Flaw Remediation (ALC_FLR)
	Systematic Flaw Remediation (ALC_FLR.3)

	Life Cycle Definition (ALC_LCD)
	Standardized Life-Cycle Model (ALC_LCD.2)

	Tools and Techniques (ALC_TAT)
	Compliance with Implementation Standards – All Parts (ALC_TA

	Ratings Maintenance (AMA)
	Assurance Maintenance Plan (AMA_AMP)
	Explicit: Assurance Maintenance Plan (AMA_AMP_EXP.1)

	Testing (ATE)
	Coverage (ATE_COV)
	Rigorous Analysis of Coverage (ATE_COV.3)

	Depth (ATE_DPT)
	Testing: Low Level Design (ATE_DPT.2)

	Functional Tests (ATE_FUN)
	Ordered Functional Testing (ATE_FUN.2)

	Independent Testing (ATE_IND)
	Independent Testing – Complete (ATE_IND.3)

	Vulnerability Assessment (AVA)
	Covert Channel Analysis (AVA_CCA)
	Explicit: Systematic Covert Channel Analysis (AVA_CCA_EXP.2)

	Misuse (AVA_MSU)
	Analysis and Testing for Insecure States (AVA_MSU.3)

	Strength of TOE Security Functions (AVA_SOF)
	Strength of TOE Security Function Evaluation (AVA_SOF.1)

	Vulnerability Analysis (AVA_VLA)
	Highly Resistant (AVA_VLA.4)

	End Notes

	Rationale
	Security Objectives derived from Threats
	Objectives derived from Security Policies
	Objectives derived from Assumptions
	Requirements Rationale
	IT Environment Requirements Rationale
	Explicit Requirements Rationale
	Explicit TOE Functional Requirements
	Explicit TOE Assurance Requirements

	Rationale for Strength of Function
	Rationale for Assurance Rating

	References
	Appendix A - Acronyms
	Appendix B - Cryptographic Standards, Policies, and Other Pu
	Appendix C – Rationale for IFC/IFF Requirements
	Appendix D – TSF Data Description
	Appendix E – Explanatory Material for Explicit Class ADV Req
	Appendix F – Example TOE Scenario

